Abstract
Thermal radiation control has garnered growing interest for its ability to provide localized cooling and heating without energy consumption. However, its direct application for energy harvesting remains largely underexplored. In this work, we demonstrate a novel system that leverages daytime radiative cooling and solar heating technologies to continuously power charging-free thermally regenerative electrochemical cycle (TREC) devices, turning ubiquitous low-grade ambient heat into electricity. Notably, by harnessing a substantial 35 °C temperature differential solely through passive cooling and heating effects, the integrated system exhibits a cell voltage of 50 mV and a specific capacity exceeding 20 mAh g-1 of PB. This work unlocks the potential of readily available low-grade ambient heat for sustainable electricity generation.
Original language | English (US) |
---|---|
Pages (from-to) | 66932-66938 |
Number of pages | 7 |
Journal | ACS Applied Materials and Interfaces |
Volume | 16 |
Issue number | 49 |
DOIs | |
State | Published - Dec 11 2024 |
Keywords
- energy harvesting
- low-grade heat
- photothermal
- radiative cooling
- thermal management
- thermally regenerative electrochemical cycle
ASJC Scopus subject areas
- General Materials Science