Elevated potential instability in the comma head: Distribution and development

Andrew A. Rosenow, Robert M. Rauber, Brian F. Jewett, Greg M. Mcfarquhar, Jason M. Keeler

Research output: Contribution to journalArticlepeer-review

Abstract

The development of elevated potential instability within the comma head of a continental winter cyclone over the north-central United States is examined using a 63-h Weather Research and Forecasting (WRF) Model simulation. The simulation is first compared to the observed cyclone. The distribution of most unstable convective available potential energy (MUCAPE) within the comma head is then analyzed. The region with positive MUCAPE was based from 2- to 4-km altitude with MUCAPE values up to 93 J kg-1. Backward trajectories from five sublayers within the region of elevated convection in the comma head were calculated to investigate how elevated potential instability developed. Air in the lowest sublayer, the source air for convective cells, originated 63 h earlier near Baja California at elevations between 2.25- and 2.75-km altitude. Air atop the layer where convection occurred originated at altitudes between 9.25 and 9.75 km in the Arctic, 5000 km away from the origin of air in the lowest sublayer. All air in the layer in which convection occurred originated over the Pacific coast of Mexico, the Pacific Ocean, or arctic regions of Canada. Diabatic processes strongly influenced air properties during transit to the comma head. Air underwent radiative cooling, was affected by mixing during passage over mountains, and underwent interactions with clouds and precipitation. Notably, no trajectory followed an isentropic surface during the transit. The changes in thermodynamic properties along the trajectories led to an arrangement of air masses in the comma head that promoted the development of potential instability and elevated convection.

Original languageEnglish (US)
Pages (from-to)1259-1278
Number of pages20
JournalMonthly Weather Review
Volume146
Issue number4
DOIs
StatePublished - Apr 1 2018

Keywords

  • Atmosphere
  • Extratropical cyclones
  • Instability
  • Snowfall
  • Trajectories
  • Winter/cool season

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Elevated potential instability in the comma head: Distribution and development'. Together they form a unique fingerprint.

Cite this