TY - JOUR
T1 - Electronic-vibrational density evolution in a perylene bisimide dimer
T2 - Mechanistic insights into excitation energy transfer
AU - Kundu, Sohang
AU - Makri, Nancy
N1 - This material is based upon work supported by the National Science Foundation under Award CHE-1955302. This research is part of the Blue Waters Sustained-Petascale Computing Project, which is supported by the National Science Foundation (Awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.
PY - 2021/8/7
Y1 - 2021/8/7
N2 - The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton-vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton-vibration interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these features through dephasing.
AB - The process of excitation energy transfer (EET) in molecular aggregates is etched with the signatures of a multitude of electronic and vibrational time scales that often are extremely difficult to resolve. The effect of the motion associated with one molecular vibration on that of another is fundamental to the dynamics of EET. In this paper we present simple theoretical ideas along with fully quantum mechanical calculations to develop a comprehensive mechanistic picture of EET in terms of the time evolution of electronic-vibrational densities (EVD) in a perylene bisimide (PBI) dimer, where 28 intramolecular normal modes couple to the ground and excited electronic states of each molecule. The EVD motion exhibits a plethora of dynamical features, which impart physical justification for the composite effects observed in the EET dynamics. Weakly coupled vibrations lead to classical-like motion of the EVD center on each electronic state, while highly nontrivial EVD characteristics develop under moderate or strong exciton-vibration interaction, leading to the formation of split or crescent-shaped densities, as well as density retention that slows down energy transfer and creates new peaks in the electronic populations. Pronounced correlation effects are observed in two-mode projections of the EVD, as a consequence of indirect vibrational coupling between uncoupled normal modes induced by the electronic coupling. Such indirect coupling depends on the strength of exciton-vibration interactions as well as the frequency mismatch between the two modes and leaves nontrivial signatures in the electronic population dynamics. The collective effects of many vibrational modes cause a partial smearing of these features through dephasing.
UR - http://www.scopus.com/inward/record.url?scp=85111502006&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111502006&partnerID=8YFLogxK
U2 - 10.1039/d1cp02135d
DO - 10.1039/d1cp02135d
M3 - Article
C2 - 34286768
AN - SCOPUS:85111502006
SN - 1463-9076
VL - 23
SP - 15503
EP - 15514
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 29
ER -