Abstract
Conical intersections in two-state systems require a coordinate-dependent coupling. This paper identifies and investigates conical intersections in cyclic tight-binding system-bath Hamiltonians with an odd number of sites and a constant site-to-site coupling. In the absence of bath degrees of freedom, such tight-binding systems with a positive coupling parameter exhibit electronic frustration and a doubly-degenerate ground state. When these systems interact with a harmonic bath, the degeneracy becomes a conical intersection between the adiabatic ground and first excited states. Under weak system-bath coupling, overlapping wavefunctions associated with different sites give rise to distinct pathways with interfering geometric phases, which lead to considerably slower transfer dynamics. The effect is most pronounced in the presence of low-temperature dissipative baths characterized by a continuous spectral density. It is found that the transfer dynamics and equilibration time of a cyclic dissipative three-site system with a positive coupling exceeds that of a similar three-site system with a negative coupling, as well as that of cyclic four-site systems, by an order of magnitude.
Original language | English (US) |
---|---|
Article number | 144001 |
Journal | Journal of Physics A: Mathematical and Theoretical |
Volume | 56 |
Issue number | 14 |
DOIs | |
State | Published - Apr 11 2023 |
Keywords
- Berry’s phase
- conical intersections
- electronic frustration
- geometric phase
- path integral
- system-bath
- tight-binding
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Statistics and Probability
- Modeling and Simulation
- Mathematical Physics
- General Physics and Astronomy