Electro-thermo-mechanical transient modeling of stress development in AlGaN/GaN high electron mobility transistors (HEMTs)

Jason P. Jones, Matthew R. Rosenberger, William P. King, Rama Vetury, Eric Heller, Donald Dorsey, Samuel Graham

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we present a coupled small-scale electro-thermal model for characterizing AlGaN/GaN HEMTs under direct current (DC) and alternating current (AC) power conditions for various duty cycles. The calculated electrostatic potential and internal heat generation data are then used in a large-scale mechanics model to determine the development of stress due to the inverse piezoelectric and thermal expansion effects. The electrical characteristics of the modeled device were compared to experimental measurements for validation as well as existing simulation data from literature. The results show that the operating conditions (bias applied and AC duty cycle) strongly impact the temperature within the device and the stress fluctuations during cyclic pulsing conditions. The peak stress from the inverse piezoelectric effect develops rapidly with applied bias and slowly relaxes as the joule heating increases the device temperature during the on state of the pulse leading to cyclic stresses in operation of AlGaN/GaN HEMTs.

Original languageEnglish (US)
Title of host publicationThermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages959-965
Number of pages7
ISBN (Electronic)9781479952670
DOIs
StatePublished - Sep 4 2014
Event14th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2014 - Orlando, United States
Duration: May 27 2014May 30 2014

Publication series

NameThermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference

Other

Other14th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2014
Country/TerritoryUnited States
CityOrlando
Period5/27/145/30/14

Keywords

  • AlGaN/GaN HEMTs
  • electro-thermo-mechanical simulation
  • pulsed devices
  • transient

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Electro-thermo-mechanical transient modeling of stress development in AlGaN/GaN high electron mobility transistors (HEMTs)'. Together they form a unique fingerprint.

Cite this