TY - GEN
T1 - Electrical battery model for use in dynamic electric vehicle simulations
AU - Kroeze, Ryan C.
AU - Krein, Philip T.
PY - 2008
Y1 - 2008
N2 - Simulation of electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles over driving schedules within a full dynamic hybrid and electric vehicle simulator requires battery models capable of predicting state-of-charge, I-V characteristics, and dynamic behavior of different battery types. A battery model capable of reproducing lithium-ion, nickel-metal hydride, and lead-acid I-V characteristics (with minimal model alterations) is proposed. A battery-testing apparatus was designed to measure the proposed parameters of the battery model for all three battery types and simulate driving schedules with a programmed source and load configuration. A multiple time-constant battery model was used for modeling lithium-ion batteries; verification of time constants in the seconds to minutes and hour ranges has been shown in numerous research articles and a time constant in the millisecond range is verified here with experiments. Lack of significant time constants in the millisecond range is validated through direct testing. A modeled capacity-rate effect within the state-of-charge determination portion of the proposed model is verified experimentally to ensure accurate prediction of battery state of charge after lengthy driving schedules. The battery model was programmed into a Matlab/Simulink environment and used as a power source for plug-in hybrid electric vehicle simulations. Results from simulations of lithium-ion battery packs show that the proposed battery model behaves well with the other subcomponents of the vehicle simulator; accuracy of the model and prediction of battery internal losses depends on the extent of tests performed on the battery used for the simulation. Extraction of model parameters and their dependence on temperature and cycle number is ongoing, as well as validation of the Simulink model with hardware-in-the-loop "driving schedule" cycling of real batteries.
AB - Simulation of electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles over driving schedules within a full dynamic hybrid and electric vehicle simulator requires battery models capable of predicting state-of-charge, I-V characteristics, and dynamic behavior of different battery types. A battery model capable of reproducing lithium-ion, nickel-metal hydride, and lead-acid I-V characteristics (with minimal model alterations) is proposed. A battery-testing apparatus was designed to measure the proposed parameters of the battery model for all three battery types and simulate driving schedules with a programmed source and load configuration. A multiple time-constant battery model was used for modeling lithium-ion batteries; verification of time constants in the seconds to minutes and hour ranges has been shown in numerous research articles and a time constant in the millisecond range is verified here with experiments. Lack of significant time constants in the millisecond range is validated through direct testing. A modeled capacity-rate effect within the state-of-charge determination portion of the proposed model is verified experimentally to ensure accurate prediction of battery state of charge after lengthy driving schedules. The battery model was programmed into a Matlab/Simulink environment and used as a power source for plug-in hybrid electric vehicle simulations. Results from simulations of lithium-ion battery packs show that the proposed battery model behaves well with the other subcomponents of the vehicle simulator; accuracy of the model and prediction of battery internal losses depends on the extent of tests performed on the battery used for the simulation. Extraction of model parameters and their dependence on temperature and cycle number is ongoing, as well as validation of the Simulink model with hardware-in-the-loop "driving schedule" cycling of real batteries.
KW - Battery model
KW - Lithium-ion battery
KW - Plug-in hybrid electric vehicle
KW - Vehicle simulator
UR - https://www.scopus.com/pages/publications/52349088173
UR - https://www.scopus.com/inward/citedby.url?scp=52349088173&partnerID=8YFLogxK
U2 - 10.1109/PESC.2008.4592119
DO - 10.1109/PESC.2008.4592119
M3 - Conference contribution
AN - SCOPUS:52349088173
SN - 9781424416684
T3 - PESC Record - IEEE Annual Power Electronics Specialists Conference
SP - 1336
EP - 1342
BT - PESC '08 - 39th IEEE Annual Power Electronics Specialists Conference - Proceedings
T2 - PESC '08 - 39th IEEE Annual Power Electronics Specialists Conference
Y2 - 15 June 2008 through 19 June 2008
ER -