TY - GEN
T1 - Electric field glow discharge inside externally excited porous spherical cavity resonators
AU - Bernhardt, Paul A.
AU - Fliflet, Arne W.
PY - 2012
Y1 - 2012
N2 - A porous spherical cavity resonator (PSCR) provides amplification of externally incident electric fields a resonant frequencies corresponding to discrete modes. The PSCR has a mesh surface with a large number of polygon (hexagon and pentagon) holes. The size of the holes is adjusted to maximize the Q of the resonator for production of maximum internal electrical fields. Amplification factors for a PSCR can be over 1000. The high resonator Q, that may exceed 10000, requires precise tuning of the incident wave frequency to a resonant frequency. The PSCR can be placed in a low-pressure (1 T) gas chamber and excited by an external microwave horn to excite a chosen spherical cavity resonator mode. At the resonant frequency, a glow discharge can occur inside the cavity producing a plasma cloud in the shape of electric field modes that are excited. Varying the neutral gas pressure inside the chamber (1) yields variations in the glow discharge light intensity and (2) affects the shapes of the plasma cloud. If the plasma frequency in the electron cloud approaches the incident wave frequency, self-action produces localized regions of dense plasmas. The PSCR apparatus can be used to study cavity resonator modes in the low pressure environment and electromagnetic wave interactions in high pressure plasmas.
AB - A porous spherical cavity resonator (PSCR) provides amplification of externally incident electric fields a resonant frequencies corresponding to discrete modes. The PSCR has a mesh surface with a large number of polygon (hexagon and pentagon) holes. The size of the holes is adjusted to maximize the Q of the resonator for production of maximum internal electrical fields. Amplification factors for a PSCR can be over 1000. The high resonator Q, that may exceed 10000, requires precise tuning of the incident wave frequency to a resonant frequency. The PSCR can be placed in a low-pressure (1 T) gas chamber and excited by an external microwave horn to excite a chosen spherical cavity resonator mode. At the resonant frequency, a glow discharge can occur inside the cavity producing a plasma cloud in the shape of electric field modes that are excited. Varying the neutral gas pressure inside the chamber (1) yields variations in the glow discharge light intensity and (2) affects the shapes of the plasma cloud. If the plasma frequency in the electron cloud approaches the incident wave frequency, self-action produces localized regions of dense plasmas. The PSCR apparatus can be used to study cavity resonator modes in the low pressure environment and electromagnetic wave interactions in high pressure plasmas.
UR - http://www.scopus.com/inward/record.url?scp=84870521489&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870521489&partnerID=8YFLogxK
U2 - 10.1109/APS.2012.6349177
DO - 10.1109/APS.2012.6349177
M3 - Conference contribution
AN - SCOPUS:84870521489
SN - 9781467304627
T3 - IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)
BT - 2012 IEEE International Symposiumon Antennas and Propagation, APSURSI 2012 - Proceedings
T2 - Joint 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, APSURSI 2012
Y2 - 8 July 2012 through 14 July 2012
ER -