Electric field glow discharge inside externally excited porous spherical cavity resonators

Paul A. Bernhardt, Arne W. Fliflet

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A porous spherical cavity resonator (PSCR) provides amplification of externally incident electric fields a resonant frequencies corresponding to discrete modes. The PSCR has a mesh surface with a large number of polygon (hexagon and pentagon) holes. The size of the holes is adjusted to maximize the Q of the resonator for production of maximum internal electrical fields. Amplification factors for a PSCR can be over 1000. The high resonator Q, that may exceed 10000, requires precise tuning of the incident wave frequency to a resonant frequency. The PSCR can be placed in a low-pressure (1 T) gas chamber and excited by an external microwave horn to excite a chosen spherical cavity resonator mode. At the resonant frequency, a glow discharge can occur inside the cavity producing a plasma cloud in the shape of electric field modes that are excited. Varying the neutral gas pressure inside the chamber (1) yields variations in the glow discharge light intensity and (2) affects the shapes of the plasma cloud. If the plasma frequency in the electron cloud approaches the incident wave frequency, self-action produces localized regions of dense plasmas. The PSCR apparatus can be used to study cavity resonator modes in the low pressure environment and electromagnetic wave interactions in high pressure plasmas.

Original languageEnglish (US)
Title of host publication2012 IEEE International Symposiumon Antennas and Propagation, APSURSI 2012 - Proceedings
DOIs
StatePublished - Dec 10 2012
Externally publishedYes
EventJoint 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, APSURSI 2012 - Chicago, IL, United States
Duration: Jul 8 2012Jul 14 2012

Publication series

NameIEEE Antennas and Propagation Society, AP-S International Symposium (Digest)
ISSN (Print)1522-3965

Other

OtherJoint 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, APSURSI 2012
CountryUnited States
CityChicago, IL
Period7/8/127/14/12

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Electric field glow discharge inside externally excited porous spherical cavity resonators'. Together they form a unique fingerprint.

Cite this