Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones

Lucile Bezacier, Bruno Reynard, Jay D Bass, Carmen Sanchez-Valle, Bertrand Van de Moortèle

Research output: Contribution to journalArticle

Abstract

Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt-Reuss-Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s- 1 and 5.6 km s- 1 (46% anisotropy), and 8.3 km s- 1 and 5.8 km s- 1 (37%), and VS between 5.1 km s- 1 and 2.5 km s- 1 (66%), and 4.7 km s- 1 and 2.9 km s- 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s-1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1-1.5 s can be explained with moderately thick (10-20 km) serpentinite bodies.

Original languageEnglish (US)
Pages (from-to)198-208
Number of pages11
JournalEarth and Planetary Science Letters
Volume289
Issue number1-2
DOIs
StatePublished - Jan 15 2010

Fingerprint

Serpentine Asbestos
antigorite
elasticity
subduction zone
Elasticity
Anisotropy
anisotropy
elastic properties
wedges
Earth mantle
serpentinization
seismic anisotropy
wave splitting
Shear waves
serpentinite
elastic property
preferred orientation
Single crystals
crystal
mantle

Keywords

  • anisotropy
  • antigorite
  • elasticity
  • serpentine
  • shear wave splitting

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Cite this

Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. / Bezacier, Lucile; Reynard, Bruno; Bass, Jay D; Sanchez-Valle, Carmen; Van de Moortèle, Bertrand.

In: Earth and Planetary Science Letters, Vol. 289, No. 1-2, 15.01.2010, p. 198-208.

Research output: Contribution to journalArticle

Bezacier, Lucile ; Reynard, Bruno ; Bass, Jay D ; Sanchez-Valle, Carmen ; Van de Moortèle, Bertrand. / Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. In: Earth and Planetary Science Letters. 2010 ; Vol. 289, No. 1-2. pp. 198-208.
@article{594073734c484f46aa28d56fe641334f,
title = "Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones",
abstract = "Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt-Reuss-Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s- 1 and 5.6 km s- 1 (46{\%} anisotropy), and 8.3 km s- 1 and 5.8 km s- 1 (37{\%}), and VS between 5.1 km s- 1 and 2.5 km s- 1 (66{\%}), and 4.7 km s- 1 and 2.9 km s- 1 (50{\%}) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s-1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1-1.5 s can be explained with moderately thick (10-20 km) serpentinite bodies.",
keywords = "anisotropy, antigorite, elasticity, serpentine, shear wave splitting",
author = "Lucile Bezacier and Bruno Reynard and Bass, {Jay D} and Carmen Sanchez-Valle and {Van de Moort{\`e}le}, Bertrand",
year = "2010",
month = "1",
day = "15",
doi = "10.1016/j.epsl.2009.11.009",
language = "English (US)",
volume = "289",
pages = "198--208",
journal = "Earth and Planetary Sciences Letters",
issn = "0012-821X",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones

AU - Bezacier, Lucile

AU - Reynard, Bruno

AU - Bass, Jay D

AU - Sanchez-Valle, Carmen

AU - Van de Moortèle, Bertrand

PY - 2010/1/15

Y1 - 2010/1/15

N2 - Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt-Reuss-Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s- 1 and 5.6 km s- 1 (46% anisotropy), and 8.3 km s- 1 and 5.8 km s- 1 (37%), and VS between 5.1 km s- 1 and 2.5 km s- 1 (66%), and 4.7 km s- 1 and 2.9 km s- 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s-1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1-1.5 s can be explained with moderately thick (10-20 km) serpentinite bodies.

AB - Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt-Reuss-Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s- 1 and 5.6 km s- 1 (46% anisotropy), and 8.3 km s- 1 and 5.8 km s- 1 (37%), and VS between 5.1 km s- 1 and 2.5 km s- 1 (66%), and 4.7 km s- 1 and 2.9 km s- 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s-1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1-1.5 s can be explained with moderately thick (10-20 km) serpentinite bodies.

KW - anisotropy

KW - antigorite

KW - elasticity

KW - serpentine

KW - shear wave splitting

UR - http://www.scopus.com/inward/record.url?scp=72949109957&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72949109957&partnerID=8YFLogxK

U2 - 10.1016/j.epsl.2009.11.009

DO - 10.1016/j.epsl.2009.11.009

M3 - Article

AN - SCOPUS:72949109957

VL - 289

SP - 198

EP - 208

JO - Earth and Planetary Sciences Letters

JF - Earth and Planetary Sciences Letters

SN - 0012-821X

IS - 1-2

ER -