Abstract
Here, we report the successful application of core/patchy-shell CdSe/CdSexTe1-x type-II heterojunction nanorods (HNRs) to realize efficient sensitized solar cells. The core/patchy-shell structure designed to have a large type-II heterointerface without completely shielding the CdSe core significantly improves photovoltaic performance compared to other HNRs with minimal or full-coverage shells. In addition, cosensitization with CdS grown by successive ionic layer adsorption and reaction further improves the power conversion efficiency. One-diode model analysis reveals that the HNRs having exposed CdSe cores and suitably grown CdS result in significant reduction of series resistance. Investigation of the intercorrelation between diode quality parameters, diode saturation current density (J0) and recombination order (β = (ideality factor)-1) reveals that HNRs with open CdSe cores exhibit reduced recombination. These results confirm that the superior performance of core/patchy-shell HNRs results from their fine-tuned structure: photocurrent is increased by the large type-II heterointerface and recombination is effectively suppressed due to the open CdSe core enabling facile electron extraction. An optimized power conversion efficiency of 5.47% (5.89% with modified electrode configuration) is reported, which is unmatched among photovoltaics utilizing anisotropic colloidal heterostructures as light-harvesting materials.
Original language | English (US) |
---|---|
Pages (from-to) | 19104-19114 |
Number of pages | 11 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 21 |
DOIs | |
State | Published - May 29 2019 |
Externally published | Yes |
Keywords
- II-VI semiconductor
- core/shell
- cosensitization
- heterojunction nanorod
- sensitized solar cell
ASJC Scopus subject areas
- General Materials Science