Efficient rfi detection in radio astronomy based on compressive statistical sensing

Gonzalo Cucho-Padin, Yue Wang, Lara Waldrop, Zhi Tian, Farzad Kamalabadi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we present an efficient method for radio frequency interference (RFI) detection based on cyclic spectrum analysis that relies on compressive statistical sensing to estimate the cyclic spectrum from sub-Nyquist data. We refer to this method as compressive statistical sensing (CSS), since we utilize the statistical autocovariance matrix from the compressed data. We demonstrate the performance of this algorithm by analyzing radio astronomy data acquired from the Arecibo Observatory (AO)'s L-Wide band receiver (~1.3 GHz), which is typically corrupted by active radars for commercial applications located near AO facilities. Our CSS-based solution enables robust and efficient detection of the RFI frequency bands present in the data, which is measured by receiver operating characteristic (ROC) curves. As a result, it allows fast and computationally efficient identification of RFI-free frequency regions in wideband radio astronomy observations.

Original languageEnglish (US)
Title of host publication2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1109-1113
Number of pages5
ISBN (Electronic)9781728112954
DOIs
StatePublished - Jul 2 2018
Event2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Anaheim, United States
Duration: Nov 26 2018Nov 29 2018

Publication series

Name2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Proceedings

Conference

Conference2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018
Country/TerritoryUnited States
CityAnaheim
Period11/26/1811/29/18

Keywords

  • Compressive statistical sensing
  • Cyclic spectrum
  • Radio astronomy
  • Radio frequency interference

ASJC Scopus subject areas

  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Efficient rfi detection in radio astronomy based on compressive statistical sensing'. Together they form a unique fingerprint.

Cite this