Abstract
Estimation of the covariance matrix and its inverse, the precision matrix, in high-dimensional situations is of great interest in many applications. In this paper, we focus on the estimation of a class of sparse precision matrices which are assumed to be approximately inversely closed for the case that the dimensionality p can be much larger than the sample size n, which is fundamentally different from the classical case that p < n. Different in nature from state-of-the-art methods that are based on penalized likelihood maximization or constrained error minimization, based on the truncated Neumann series representation, we propose a computationally efficient precision matrix estimator that has a computational complexity of O(p 3). We prove that the proposed estimator is consistent in probability and in L 2 under the spectral norm. Moreover, its convergence is shown to be rate-optimal in the sense of minimax risk. We further prove that the proposed estimator is model selection consistent by establishing a convergence result under the entry-wise ∞-norm. Simulations demonstrate the encouraging finite sample size performance and computational advantage of the proposed estimator. The proposed estimator is also applied to a real breast cancer data and shown to outperform existing precision matrix estimators.
Original language | English (US) |
---|---|
Article number | 6159094 |
Pages (from-to) | 2899-2912 |
Number of pages | 14 |
Journal | IEEE Transactions on Signal Processing |
Volume | 60 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2012 |
Externally published | Yes |
Keywords
- Consistency
- High-dimensionality
- Minimax risk
- Precision matrix estimation
- Regularization
- Sparsity
ASJC Scopus subject areas
- Signal Processing
- Electrical and Electronic Engineering