Efficient localized inference for large graphical models

Jinglin Chen, Jian Peng, Qiang Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We propose a new localized inference algorithm for answering marginalization queries in large graphical models with the correlation decay property. Given a query variable and a large graphical model, we define a much smaller model in a local region around the query variable in the target model so that the marginal distribution of the query variable can be accurately approximated. We introduce two approximation error bounds based on the Dobrushin's comparison theorem and apply our bounds to derive a greedy expansion algorithm that efficiently guides the selection of neighbor nodes for localized inference. We verify our theoretical bounds on various datasets and demonstrate that our localized inference algorithm can provide fast and accurate approximation for large graphical models.

Original languageEnglish (US)
Title of host publicationProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018
EditorsJerome Lang
PublisherInternational Joint Conferences on Artificial Intelligence
Pages4987-4993
Number of pages7
ISBN (Electronic)9780999241127
DOIs
StatePublished - 2018
Event27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden
Duration: Jul 13 2018Jul 19 2018

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2018-July
ISSN (Print)1045-0823

Other

Other27th International Joint Conference on Artificial Intelligence, IJCAI 2018
Country/TerritorySweden
CityStockholm
Period7/13/187/19/18

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Efficient localized inference for large graphical models'. Together they form a unique fingerprint.

Cite this