Efficient Constrained Multi-Agent Trajectory Optimization Using Dynamic Potential Games

Maulik Bhatt, Yixuan Jia, Negar Mehr

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Although dynamic games provide a rich paradigm for modeling agents' interactions, solving these games for real-world applications is often challenging. Many real-world interactive settings involve general nonlinear state and input constraints that couple agents' decisions with one another. In this work, we develop an efficient and fast planner for interactive trajectory optimization in constrained setups using a constrained game-theoretical framework. Our key insight is to leverage the special structure of agents' objective and constraint functions that are common in multi-agent interactions for fast and reliable planning. More precisely, we identify the structure of agents' cost and constraint functions under which the resulting dynamic game is an instance of a constrained dynamic potential game. Constrained dynamic potential games are a class of games for which instead of solving a set of coupled constrained optimal control problems, a constrained Nash equilibrium, i.e. a Generalized Nash equilibrium, can be found by solving a single constrained optimal control problem. This simplifies constrained interactive trajectory optimization significantly. We compare the performance of our method in a navigation setup involving four planar agents and show that our method is on average 20 times faster than the state-of-the-art. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.

Original languageEnglish (US)
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7303-7310
Number of pages8
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: Oct 1 2023Oct 5 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period10/1/2310/5/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Efficient Constrained Multi-Agent Trajectory Optimization Using Dynamic Potential Games'. Together they form a unique fingerprint.

Cite this