Efficient computation of discounted asymmetric information zero-sum stochastic games

Lichun Li, Jeff S. Shamma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In asymmetric information zero-sum games, one player has superior information about the game over the other. Asymmetric information games are particularly relevant for security problems, e.g., where an attacker knows its own skill set or alternatively a system administrator knows the state of its resources. In such settings, the informed player is faced with the tradeoff of exploiting its superior information at the cost of revealing its superior information. This tradeoff is typically addressed through randomization, in an effort to keep the uninformed player informationally off balance. A lingering issue is the explicit computation of such strategies. This paper, building on prior work for repeated games, presents an LP formulation to compute suboptimal strategies for the informed player in discounted asymmetric information stochastic games in which state transitions are not affected by the uninformed player. Furthermore, the paper presents bounds between the security level guaranteed by the sub-optimal strategy and the optimal value. The results are illustrated on a stochastic intrusion detection problem.

Original languageEnglish (US)
Title of host publication54rd IEEE Conference on Decision and Control,CDC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4531-4536
Number of pages6
ISBN (Electronic)9781479978861
DOIs
StatePublished - Feb 8 2015
Externally publishedYes
Event54th IEEE Conference on Decision and Control, CDC 2015 - Osaka, Japan
Duration: Dec 15 2015Dec 18 2015

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume54rd IEEE Conference on Decision and Control,CDC 2015
ISSN (Print)0743-1546

Other

Other54th IEEE Conference on Decision and Control, CDC 2015
Country/TerritoryJapan
CityOsaka
Period12/15/1512/18/15

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Efficient computation of discounted asymmetric information zero-sum stochastic games'. Together they form a unique fingerprint.

Cite this