Efficient Bimanual Manipulation Using Learned Task Schemas

Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, Abhinav Gupta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We address the problem of effectively composing skills to solve sparse-reward tasks in the real world. Given a set of parameterized skills (such as exerting a force or doing a top grasp at a location), our goal is to learn policies that invoke these skills to efficiently solve such tasks. Our insight is that for many tasks, the learning process can be decomposed into learning a state-independent task schema (a sequence of skills to execute) and a policy to choose the parameterizations of the skills in a state-dependent manner. For such tasks, we show that explicitly modeling the schema's state-independence can yield significant improvements in sample efficiency for model-free reinforcement learning algorithms. Furthermore, these schemas can be transferred to solve related tasks, by simply re-learning the parameterizations with which the skills are invoked. We find that doing so enables learning to solve sparse-reward tasks on real-world robotic systems very efficiently. We validate our approach experimentally over a suite of robotic bimanual manipulation tasks, both in simulation and on real hardware. See videos at http://tinyurl.com/chitnis-schema.

Original languageEnglish (US)
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1149-1155
Number of pages7
ISBN (Electronic)9781728173955
DOIs
StatePublished - May 2020
Externally publishedYes
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: May 31 2020Aug 31 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
CountryFrance
CityParis
Period5/31/208/31/20

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Efficient Bimanual Manipulation Using Learned Task Schemas'. Together they form a unique fingerprint.

Cite this