Efficient and reliable low-power backscatter networks

Jue Wang, Haitham Hassanieh, Dina Katabi, Piotr Indyk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

There is a long-standing vision of embedding backscatter nodes like RFIDs into everyday objects to build ultra-low power ubiquitous networks. A major problem that has challenged this vision is that backscatter communication is neither reliable nor efficient. Backscatter nodes cannot sense each other, and hence tend to suffer from colliding transmissions. Further, they are ineffective at adapting the bit rate to channel conditions, and thus miss opportunities to increase throughput, or transmit above capacity causing errors. This paper introduces a new approach to backscatter communication. The key idea is to treat all nodes as if they were a single virtual sender. One can then view collisions as a code across the bits transmitted by the nodes. By ensuring only a few nodes collide at any time, we make collisions act as a sparse code and decode them using a new customized compressive sensing algorithm. Further, we can make these collisions act as a rateless code to automatically adapt the bit rate to channel quality - i.e., nodes can keep colliding until the base station has collected enough collisions to decode. Results from a network of backscatter nodes communicating with a USRP backscatter base station demonstrate that the new design produces a 3.5× throughput gain, and due to its rateless code, reduces message loss rate in challenging scenarios from 50% to zero.

Original languageEnglish (US)
Title of host publicationSIGCOMM'12 - Proceedings of the ACM SIGCOMM 2012 Conference Applications, Technologies, Architectures, and Protocols for Computer Communication
Pages61-72
Number of pages12
DOIs
StatePublished - 2012
Externally publishedYes
EventACM SIGCOMM 2012 Conference Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 2012 - Helsinki, Finland
Duration: Aug 13 2012Aug 17 2012

Publication series

NameSIGCOMM'12 - Proceedings of the ACM SIGCOMM 2012 Conference Applications, Technologies, Architectures, and Protocols for Computer Communication

Other

OtherACM SIGCOMM 2012 Conference Applications, Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM 2012
Country/TerritoryFinland
CityHelsinki
Period8/13/128/17/12

Keywords

  • backscatter
  • compressive sensing
  • rfid
  • wireless

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Efficient and reliable low-power backscatter networks'. Together they form a unique fingerprint.

Cite this