Efficiency of bacterial protein synthesis during anaerobic degradation of cattle waste

R. I. Mackie, M. P. Bryant

Research output: Contribution to journalArticlepeer-review

Abstract

The rate of [15N]ammonia (15NH3) uptake or incorporation into bacterial cells was studied, using stirred, 3-liter benchtop digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60°C and at four different loading rates (3, 6, 9, and 12 g of volatile solids per liter of reactor volume per day). The rate of NH3-N incorporation for the period 1 to 5 h after feeding at the four different loading rates was 0.49, 0.83, 1.05, and 1.08 mg/liter per h in the mesophilic digestor and 0.68, 1.07, 1.17, and 1.21 mg/liter per h in the thermophilic digestor. Values were lower 7 to 21 h after feeding in both digestors and were related to the rate of fermentation or CH4 production. In the mesophilic digestors, the rate of bacterial cell production ranged from 3.97 to 8.72 mg of dry cells per liter per h, 1 to 5 h after feeding at the different loading rates. Corresponding values for the thermophilic digestors ranged from 5.46 to 9.77 mg of dry cells per liter per h. Cell yield values ranged from 2.3 to 3.1 mg of dry cells per mol of CH4 produced in the mesophilic and thermophilic digestors at the two lower loading rates. The values were higher (2.8 to 3.4) in the mesophilic digestors at the two higher loading rates because of the accumulation of propionate and a consequent reduction in CH4 production. Low cell yields such as those measured in this study are characteristic of low-specific-growth rates under energy-limited conditions.

Original languageEnglish (US)
Pages (from-to)87-92
Number of pages6
JournalApplied and environmental microbiology
Volume56
Issue number1
DOIs
StatePublished - 1990

ASJC Scopus subject areas

  • Biotechnology
  • Food Science
  • Applied Microbiology and Biotechnology
  • Ecology

Fingerprint

Dive into the research topics of 'Efficiency of bacterial protein synthesis during anaerobic degradation of cattle waste'. Together they form a unique fingerprint.

Cite this