TY - JOUR
T1 - Effects on nitrogen balance and metabolism of branched-chain amino acids by growing pigs of supplementing isoleucine and valine to diets with adequate or excess concentrations of dietary leucine
AU - Kwon, Woong B.
AU - Soto, Jose A.
AU - Stein, Hans H.
N1 - Funding Information:
The financial support from Ajinomoto Animal Nutrition North America, Inc., Chicago, IL is greatly appreciated.
Publisher Copyright:
© The Author(s) 2020.
PY - 2020
Y1 - 2020
N2 - Diets based on high levels of corn protein have elevated concentrations of Leu, which may negatively affect N retention in pigs. An experiment was, therefore, conducted to test the hypothesis that Ile and Val supplementation may overcome the detrimental effects of excess dietary Leu on N balance and metabolism of branched-chain amino acids (BCAA) in growing pigs. A total of 144 barrows (initial body weight: 28.5 kg) were housed in metabolism crates and randomly assigned to 1 of 18 dietary treatments. The basal diet contained 0.98% standardized ileal digestible (SID) Lys and had SID Leu, Val, and Ile ratios to SID Lys of 100%, 60%, and 43%, respectively. Crystalline l-Leu (0% or 2.0%), l-Ile (0%, 0.1%, or 0.2%), and l-Val (0%, 0.1%, or 0.2%) were added to the basal diet resulting in a total of 18 dietary treatments that were arranged in a 2 × 3 × 3 factorial. Urine and fecal samples were collected for 5 d after 7 d of adaptation. Blood, skeletal muscle, and liver samples were collected at the conclusion of the experiment. There were no three-way interactions among the main effects. Excess Leu in diets reduced (P < 0.05) N retention and biological value of protein and increased (P < 0.001) plasma urea N (PUN), but PUN was reduced (P < 0.05) as dietary Val increased. Concentrations of Leu in the liver were greater (P < 0.001) in pigs fed excess Leu diets than in pigs fed adequate Leu diets, but concentrations of BCAA in muscle were greater (P < 0.05) in pigs fed low-Leu diets. Increasing dietary Ile increased (P < 0.001) plasmafree Ile and plasma concentration of the Ile metabolite, α-keto-β-methylvalerate, but the increase was greater in diets without excess Leu than in diets with excess Leu (interaction, P < 0.001). Plasma concentrations of Val and the Val metabolite α-keto isovalerate increased (P < 0.001) with increasing dietary Val in diets with adequate Leu, but not in diets with excess Leu (interaction, P < 0.001). Increasing dietary Leu increased (P < 0.001) plasma-free Leu and plasma concentration of the Leu metabolite, α-keto isocaproate (KIC). In contrast, increased dietary Val reduced (P < 0.05) the plasma concentration of KIC. In conclusion, excess dietary Leu reduced N retention and increased PUN in growing pigs, but Val supplementation to excess Leu diets may increase the efficiency of amino acid utilization for protein synthesis as indicated by reduced PUN.
AB - Diets based on high levels of corn protein have elevated concentrations of Leu, which may negatively affect N retention in pigs. An experiment was, therefore, conducted to test the hypothesis that Ile and Val supplementation may overcome the detrimental effects of excess dietary Leu on N balance and metabolism of branched-chain amino acids (BCAA) in growing pigs. A total of 144 barrows (initial body weight: 28.5 kg) were housed in metabolism crates and randomly assigned to 1 of 18 dietary treatments. The basal diet contained 0.98% standardized ileal digestible (SID) Lys and had SID Leu, Val, and Ile ratios to SID Lys of 100%, 60%, and 43%, respectively. Crystalline l-Leu (0% or 2.0%), l-Ile (0%, 0.1%, or 0.2%), and l-Val (0%, 0.1%, or 0.2%) were added to the basal diet resulting in a total of 18 dietary treatments that were arranged in a 2 × 3 × 3 factorial. Urine and fecal samples were collected for 5 d after 7 d of adaptation. Blood, skeletal muscle, and liver samples were collected at the conclusion of the experiment. There were no three-way interactions among the main effects. Excess Leu in diets reduced (P < 0.05) N retention and biological value of protein and increased (P < 0.001) plasma urea N (PUN), but PUN was reduced (P < 0.05) as dietary Val increased. Concentrations of Leu in the liver were greater (P < 0.001) in pigs fed excess Leu diets than in pigs fed adequate Leu diets, but concentrations of BCAA in muscle were greater (P < 0.05) in pigs fed low-Leu diets. Increasing dietary Ile increased (P < 0.001) plasmafree Ile and plasma concentration of the Ile metabolite, α-keto-β-methylvalerate, but the increase was greater in diets without excess Leu than in diets with excess Leu (interaction, P < 0.001). Plasma concentrations of Val and the Val metabolite α-keto isovalerate increased (P < 0.001) with increasing dietary Val in diets with adequate Leu, but not in diets with excess Leu (interaction, P < 0.001). Increasing dietary Leu increased (P < 0.001) plasma-free Leu and plasma concentration of the Leu metabolite, α-keto isocaproate (KIC). In contrast, increased dietary Val reduced (P < 0.05) the plasma concentration of KIC. In conclusion, excess dietary Leu reduced N retention and increased PUN in growing pigs, but Val supplementation to excess Leu diets may increase the efficiency of amino acid utilization for protein synthesis as indicated by reduced PUN.
KW - Branched-chain amino acids
KW - Isoleucine
KW - Leucine
KW - Nitrogen balance
KW - Pigs
KW - Valine
UR - http://www.scopus.com/inward/record.url?scp=85096888686&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85096888686&partnerID=8YFLogxK
U2 - 10.1093/JAS/SKAA346
DO - 10.1093/JAS/SKAA346
M3 - Article
C2 - 33095867
AN - SCOPUS:85096888686
SN - 0021-8812
VL - 98
JO - Journal of Animal Science
JF - Journal of Animal Science
IS - 11
M1 - skaa346
ER -