TY - GEN
T1 - Effects of the manufacturing process on the dimensional accuracy of thermoset composites
AU - Zhu, Qi
AU - Geubelle, Philippe H.
N1 - Publisher Copyright:
© 2000 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2000
Y1 - 2000
N2 - The warpage of thermoset composite structures during the manufacturing process is a direct consequence of residual stress development. The capability to predict residual stresses is crucial to the manufacture of dimensionally accurate composite structures. This paper is focused on understanding the fundamental issues leading to residual stresses in thermoset polymer composites and their effect on the dimensioned accuracy of the manufactured components. Special emphasis is placed on the simulation of autoclave curing and hot pressing. A three-dimensional coupled thermo-chemo-viscoelastic model is developed to simulate the heat transfer, curing, residual stresses and deformation of a composite part during the entire cure cycle. The predicted values of curvature for cross-ply graphite-epoxy laminates agree well with experimental observations. The numerical result indicates that a significant fraction of the residual stress develops before cooldown. Detailed studies are also performed to examine the springforward phenomenon in L-shaped composite parts. The finite element results show that mold design (male vs. female mold), mold thermal expansion, and part thickness all play an important role on the final shape of the parts.
AB - The warpage of thermoset composite structures during the manufacturing process is a direct consequence of residual stress development. The capability to predict residual stresses is crucial to the manufacture of dimensionally accurate composite structures. This paper is focused on understanding the fundamental issues leading to residual stresses in thermoset polymer composites and their effect on the dimensioned accuracy of the manufactured components. Special emphasis is placed on the simulation of autoclave curing and hot pressing. A three-dimensional coupled thermo-chemo-viscoelastic model is developed to simulate the heat transfer, curing, residual stresses and deformation of a composite part during the entire cure cycle. The predicted values of curvature for cross-ply graphite-epoxy laminates agree well with experimental observations. The numerical result indicates that a significant fraction of the residual stress develops before cooldown. Detailed studies are also performed to examine the springforward phenomenon in L-shaped composite parts. The finite element results show that mold design (male vs. female mold), mold thermal expansion, and part thickness all play an important role on the final shape of the parts.
UR - http://www.scopus.com/inward/record.url?scp=85119682675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119682675&partnerID=8YFLogxK
U2 - 10.1115/IMECE2000-1490
DO - 10.1115/IMECE2000-1490
M3 - Conference contribution
AN - SCOPUS:85119682675
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
SP - 319
EP - 328
BT - Heat Transfer
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2000 International Mechanical Engineering Congress and Exposition, IMECE 2000
Y2 - 5 November 2000 through 10 November 2000
ER -