Effects of rumen-protected amino acids on ruminant nitrogen balance, plasma amino acid concentrations and performance.

M. D. Wright, S. C. Loerch

Research output: Contribution to journalArticlepeer-review


A series of trials was conducted to determine the effects of supplemental rumen-protected methionine (RPMet) and lysine (RPLys) on nutrient metabolism and performance. In situ RPMet N disappearance was less than 4% following 48 h of incubation and was not affected (P greater than .05) by diet or resultant ruminal pH differences, indicating that RPMet was well protected from ruminal microbial degradation. Thirty-five Dorset-sired crossbred wether lambs (avg wt 28 kg) fed ground corn-soybean hull diets supplemented with urea were randomly assigned to one of the following treatments: 1) 0% RPMet, 2) .03% RPMet, 3) .06% RPMet, 4) .09% RPMet or 5) .12% RPMet. Dry matter, fiber and N digestibilities and N retention were not affected (P greater than .05) by treatment. Plasma methionine concentration tended to increase linearly (P less than .07) with dietary RPMet level. Six Simmental X Angus steers (avg wt 427 kg) were fed a corn grain-corn silage diet supplemented with urea and five levels of RPMet: 1) 0%, 2) .04%, 3) .08%, 4) .12% and 5) .16%. The plasma methionine concentration increased linearly (P less than .01) with dietary RPMet level. In a steer performance trial, no improvements in feedlot performance resulted due to these RPMet levels (P greater than .05), suggesting that the control diet (0% RPMet) was meeting the methionine requirement of these steers. The effects of RPMet and RPLys on growing and finishing steer feedlot performance also were evaluated. Treatments were 1) urea control, 2) soybean meal positive control, 3) .09% RPMet + .06% RPLys, 4) .12% RPMet + .08% RPLys and 5) .15% RPMet + .10% RPLys. In the growing trial, added RPMet and RPLys did not improve steer feedlot performance. In the finishing trial, only steers fed .09% RPMet + .06% RPLys had higher (P less than .05) gains than those fed the urea control diet. These trials indicate that postruminal methionine and lysine supplies were not limiting feedlot steer performance.

Original languageEnglish (US)
Pages (from-to)2014-2027
Number of pages14
JournalJournal of animal science
Issue number8
StatePublished - Aug 1988

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics


Dive into the research topics of 'Effects of rumen-protected amino acids on ruminant nitrogen balance, plasma amino acid concentrations and performance.'. Together they form a unique fingerprint.

Cite this