Effects of Particle Size on Mg2+ Ion Intercalation into λ-MnO2 Cathode Materials

Wenxiang Chen, Xun Zhan, Binbin Luo, Zihao Ou, Pei Chieh Shih, Lehan Yao, Saran Pidaparthy, Arghya Patra, Hyosung An, Paul V. Braun, Ryan M. Stephens, Hong Yang, Jian Min Zuo, Qian Chen

Research output: Contribution to journalArticlepeer-review

Abstract

An emergent theme in mono- and multivalent ion batteries is to utilize nanoparticles (NPs) as electrode materials based on the phenomenological observations that their short ion diffusion length and large electrode-electrolyte interface can lead to improved ion insertion kinetics compared to their bulk counterparts. However, the understanding of how the NP size fundamentally relates to their electrochemical behaviors (e.g., charge storage mechanism, phase transition associated with ion insertion) is still primitive. Here, we employ spinel λ-MnO2 particles as a model cathode material, which have effective Mg2+ ion intercalation but with their size effect poorly understood to investigate their operating mechanism via a suite of electrochemical and structural characterizations. We prepare two differently sized samples, the small nanoscopic λ-MnO2 particles (81 ± 25 nm) and big micron-sized ones (814 ± 207 nm) via postsynthesis size-selection. Analysis of the charge storage mechanisms shows that the stored charge from Mg2+ ion intercalation dominates in both systems and is ?10 times higher in small particles than that in the big ones. From both X-ray diffraction and atomic-resolution scanning transmission electron microscopy imaging, we reveal a fundamental difference in phase transition of the differently sized particles during Mg2+ ion intercalation: the small NPs undergo a solid-solution-like phase transition which minimizes lattice mismatch and energy penalty for accommodating new phases, whereas the big particles follow conventional multiphase transformation. We show that this pathway difference is related to the improved electrochemical performance (e.g., rate capability, cycling performance) of small particles over the big ones which provides important insights in encoding within the particle dimension, that is, the single-phase transition pathway in high-performance electrode materials for multivalent ion batteries.

Original languageEnglish (US)
Pages (from-to)4712-4720
Number of pages9
JournalNano letters
Volume19
Issue number7
DOIs
StatePublished - Jul 10 2019

Keywords

  • Mg-ion batteries
  • nanotechnology
  • particle size effect
  • scanning transmission electron microscopy
  • solid-solution phase transition
  • spinel

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Effects of Particle Size on Mg2+ Ion Intercalation into λ-MnO2 Cathode Materials'. Together they form a unique fingerprint.

Cite this