Effects of nonlinear resonant absorption on sodium laser guide stars

Byron M. Welsh, Chester S. Gardner, Laird A. Thompson

Research output: Contribution to journalArticlepeer-review


Saturation effects may severely limit the brightness of guide stars created in the mesospheric sodium (Na) layer. Saturation arises when the laser energy density is large enough to significantly alter the population densities of the atomic states within the layer. These altered state populations lead to nonlinear absorption of the laser energy thereby producing in a reduced rate of fluorescence and an increased rate of stimulated emission. The level of saturation is determined by the laser’s pulse length, pulse energy, beamwidth and linewidth. We have quantified the saturation effects in terms of these laser parameters and have formulated design equations which will allow us to design a laser capable of achieving a specified guide star brightness while at the same time minimizing the power and pulse length requirements. Our calculations show that a Na laser having a pulse energy and pulse length on the order of 106 mJ and 69 μs respectively and an linewidth of 600 MHz will produce a guide star at zenith which is bright enough to drive an adaptive optics system with a seeing cell size of ro = 18.5 cm. This energy corresponds to a laser power of 21 watts at 200 pulses per second.

Original languageEnglish (US)
Pages (from-to)203-214
Number of pages12
JournalProceedings of SPIE - The International Society for Optical Engineering
StatePublished - Sep 20 1989

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Effects of nonlinear resonant absorption on sodium laser guide stars'. Together they form a unique fingerprint.

Cite this