Effects of freezing on intratumoral drug transport

Bumsoo Han, Ka Yaw Teo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Efficacy of many novel therapeutic agents are impaired by hindered interstitial diffusion in tumor. In the context of overcoming this drug delivery barrier, a hypothesis was postulated that freeze/thaw (F/T) may induce favorable changes of tumor tissue microstructure to facilitate the interstitial diffusion. This hypothesis may also be relevant to develop a mechanistically derived chemotherapeutic strategy for cryo-treated tumors. In the present study, this hypothesis was tested by characterizing the effects of F/T on the interstitial diffusion using an in vitro engineered tumor model (ET). The diffusion coefficients of FITC-labeled dextran was measured within the frozen/thawed and unfrozen ETs. The results showed that the diffusion coefficients increased after F/T but the extent of increase was dependent on the size of dextran. This implies that the combination of cryosurgey and chemotherapy should be designed considering the biophysical chamgesof tissues after freeze/thaw and the diffusion charactistics of drug molecules.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages246-249
Number of pages4
ISBN (Print)9781424432967
DOIs
StatePublished - 2009
Externally publishedYes
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: Sep 2 2009Sep 6 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Other

Other31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period9/2/099/6/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Effects of freezing on intratumoral drug transport'. Together they form a unique fingerprint.

Cite this