@inproceedings{8e65ae81c26842b3b2f5288afe28c37d,
title = "Effects of freezing on intratumoral drug transport",
abstract = "Efficacy of many novel therapeutic agents are impaired by hindered interstitial diffusion in tumor. In the context of overcoming this drug delivery barrier, a hypothesis was postulated that freeze/thaw (F/T) may induce favorable changes of tumor tissue microstructure to facilitate the interstitial diffusion. This hypothesis may also be relevant to develop a mechanistically derived chemotherapeutic strategy for cryo-treated tumors. In the present study, this hypothesis was tested by characterizing the effects of F/T on the interstitial diffusion using an in vitro engineered tumor model (ET). The diffusion coefficients of FITC-labeled dextran was measured within the frozen/thawed and unfrozen ETs. The results showed that the diffusion coefficients increased after F/T but the extent of increase was dependent on the size of dextran. This implies that the combination of cryosurgey and chemotherapy should be designed considering the biophysical chamgesof tissues after freeze/thaw and the diffusion charactistics of drug molecules.",
author = "Bumsoo Han and Teo, {Ka Yaw}",
year = "2009",
doi = "10.1109/IEMBS.2009.5333804",
language = "English (US)",
isbn = "9781424432967",
series = "Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009",
publisher = "IEEE Computer Society",
pages = "246--249",
booktitle = "Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society",
address = "United States",
note = "31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 ; Conference date: 02-09-2009 Through 06-09-2009",
}