Abstract
An experiment was conducted to examine the impact of communication methods (text-only, audio-only, and audio-plus-video) on communication patterns and effectiveness in a 2-person remote spatial orientation task. The task required a pair of participants to figure out the cardinal direction of a target object by communicating spatial information and perspectives. Results showed that overall effectiveness in the audio-only condition was better than the text-only and audio-plus-video conditions, and communication patterns were more predictive of errors than individual differences in spatial abilities. Discourse analysis showed that participants in the audio-plus-video condition performed less mental transformation of spatial information when communicating, which led to more interpretation errors by the listener. Participants in the text-only conditions performed less confirmation and made more errors by misreading their own display. Results suggested that speakers in the audio-plus-video condition minimized effort by communicating spatial information based on their own perspective but speakers in the audio-only and text-only conditions would more likely communicate transformed spatial information. Analysis of gestures in the audio-plus-video condition confirmed that iconic gestures tended to co-occur with spatial transformation. Iconic gesture rates were negatively correlated with transformation errors, indicating that iconic gestures more likely co-occurred with successful communication of spatial transformation. Results show that when visual interactive feedback is available, speakers tend to adopt egocentric spatial perspectives to minimize effort in mental transformation and rely on the feedback to ensure that the hearer correctly interprets the information. When visual interactive feedback is not available, speakers will put more effort in transforming spatial information to help the hearer to understand the information. The current result demonstrated that allowing two persons to see and communicate with each other during a remote spatial reasoning task can lead to more errors because of the use of a suboptimal communication strategy.
Original language | English (US) |
---|---|
Pages (from-to) | 150-180 |
Number of pages | 31 |
Journal | Spatial Cognition and Computation |
Volume | 13 |
Issue number | 2 |
DOIs | |
State | Published - Apr 2013 |
Keywords
- communication methods
- discourse analysis
- gesture analysis
- remote spatial communication
ASJC Scopus subject areas
- Modeling and Simulation
- Experimental and Cognitive Psychology
- Computer Vision and Pattern Recognition
- Earth-Surface Processes
- Computer Graphics and Computer-Aided Design