Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements

Nicholas A. Farace, William G Buttlar, Henrique M Reis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The utilization of asphalt rejuvenator, and its effectiveness for restoring thermal and mechanical properties was investigated via Disk-shaped Compact Tension (DC(T)) and acoustic emission (AE) testing for determining mechanical properties and embrittlement temperatures of the mixtures. During the DC(T) testing the fracture energies and peak loads were used to measure the resistance of the rejuvenated asphalt to low temperature cracking. The AE testing monitored the acoustic emission activity while the specimens were cooled from room temperature to -40 °C to estimate the temperature at which thermal cracking began (i.e. the embrittlement temperature). First, a baseline response was obtained by obtaining the mechanical and thermal response of virgin HMA samples and HMA samples that had been exposed to oxidative aging for 36 hours at 135°C. The results showed the virgin samples had much higher peak loads and fracture energies than the 36 hours aged samples. Acoustic Emission showed similar results with the virgin samples having embrittlement temperatures 10 °C cooler than the 36 hours aged specimens. Then, overaged for 36 hours specimens were treated different amounts of rejuvenator (10%, 15%, and 20% by weight of binder content) and left to dwell for increased amount of time periods varying from one to eight weeks. It was observed that the AE results showed an improvement of embrittlement temperature with increasing with the dwell times. The 8 weeks specimens had cooler embrittlement temperatures than the virgin specimens. Finally, the low temperature effects on fracture energy and peak load of the rejuvenated asphalt was investigated. Rejuvenator was applied (10% by weight of binder) to specimens aged 36 hours at 135 °C, and the dwell time was varied from 1 to 4 weeks. The results showed that the peak loads were restored to levels of the virgin specimens, and the fracture energies improved to levels beyond that of the virgin specimens. The results also showed a general trend of improvement for the AE testing of the embrittlement temperature.

Original languageEnglish (US)
Title of host publicationHealth Monitoring of Structural and Biological Systems 2016
EditorsTribikram Kundu
PublisherSPIE
ISBN (Electronic)9781510600461
DOIs
StatePublished - Jan 1 2016
EventHealth Monitoring of Structural and Biological Systems 2016 - Las Vegas, United States
Duration: Mar 21 2016Mar 24 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9805
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherHealth Monitoring of Structural and Biological Systems 2016
CountryUnited States
CityLas Vegas
Period3/21/163/24/16

    Fingerprint

Keywords

  • Disk-Shape Compact Tension
  • asphalt concrete
  • materials characterization
  • nonlinear response
  • oxidative aging
  • pavements
  • rejuvenator

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Farace, N. A., Buttlar, W. G., & Reis, H. M. (2016). Effects of asphalt rejuvenator on thermal and mechanical properties on oxidized hot mixed asphalt pavements. In T. Kundu (Ed.), Health Monitoring of Structural and Biological Systems 2016 [980525] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 9805). SPIE. https://doi.org/10.1117/12.2217589