TY - GEN
T1 - Effects of Acoustic Nonlinearities on the Estimation of Attenuation from Ultrasonic Backscatter
AU - Coila, Andres
AU - Oelze, Michael
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/10
Y1 - 2019/10
N2 - The attenuation coefficient (AC) has demonstrated the ability to classify tissue state. Linear acoustic propagation is assumed when estimating the AC using spectral-based methods from the ultrasonic backscatter. However, the effects of acoustic nonlinearities can distort the backscattered power spectra versus depth. The distortion of the power spectra could result in a bias in the estimation of the AC. The goal of the study was to quantify the effects of nonlinear distortion on the estimation of AC from ultrasonic backscatter using spectral methods. We computed the AC from backscattered signals using the spectral log difference method and a reference phantom to account for diffraction effects. Computational simulations and experiments in phantoms were performed. In the experiments, three tissue-mimicking phantoms, named A, B and C having estimated AC values of 0.60, 0.90, and 0.20 dB/cm/MHz, respectively, and B/A ≈ 6.6 for each phantom were scanned using a single-element focused transducer (f/2) having a 0.5 diameter and 5-MHz center frequency. The phantoms were scanned using six excitation levels from a high-power (HP) pulsing apparatus (RAM-5000, Ritec, USA). The AC was estimated from phantom A using either phantom B (high attenuation) or phantom C (low attenuation) as the reference. The AC was estimated at each excitation level over the analysis bandwidth (- 6-dB criterion) to determine the effects of acoustic nonlinearity on estimation of AC. The presence of nonlinear distortion can be quantified through the Gol'dberg number, which is inversely proportional to the product of the nonlinearity coefficient and attenuation. We hypothesized that because the B/A values were approximately the same for each phantom, the effects of nonlinear distortion would be more pronounced when using phantom C, which had much lower attenuation. Specifically, increased excess attenuation due to transfer of energy from the fundamental to the harmonics would be observed more in phantom C. The AC estimate increased from 0.57 to 0.67 dB/cm/MHz as the excitation levels increased from level one to six when using phantom B as a reference. In contrast, when using phantom C as reference, the estimated AC slope of phantom A decreased from 0.57 to 0.43 dB/cm/MHz as the excitation levels increased from level one to six. Therefore, use of a reference with different attenuation resulted in increased bias of AC estimates due to nonlinear distortion being this deviation larger when using low attenuating media.
AB - The attenuation coefficient (AC) has demonstrated the ability to classify tissue state. Linear acoustic propagation is assumed when estimating the AC using spectral-based methods from the ultrasonic backscatter. However, the effects of acoustic nonlinearities can distort the backscattered power spectra versus depth. The distortion of the power spectra could result in a bias in the estimation of the AC. The goal of the study was to quantify the effects of nonlinear distortion on the estimation of AC from ultrasonic backscatter using spectral methods. We computed the AC from backscattered signals using the spectral log difference method and a reference phantom to account for diffraction effects. Computational simulations and experiments in phantoms were performed. In the experiments, three tissue-mimicking phantoms, named A, B and C having estimated AC values of 0.60, 0.90, and 0.20 dB/cm/MHz, respectively, and B/A ≈ 6.6 for each phantom were scanned using a single-element focused transducer (f/2) having a 0.5 diameter and 5-MHz center frequency. The phantoms were scanned using six excitation levels from a high-power (HP) pulsing apparatus (RAM-5000, Ritec, USA). The AC was estimated from phantom A using either phantom B (high attenuation) or phantom C (low attenuation) as the reference. The AC was estimated at each excitation level over the analysis bandwidth (- 6-dB criterion) to determine the effects of acoustic nonlinearity on estimation of AC. The presence of nonlinear distortion can be quantified through the Gol'dberg number, which is inversely proportional to the product of the nonlinearity coefficient and attenuation. We hypothesized that because the B/A values were approximately the same for each phantom, the effects of nonlinear distortion would be more pronounced when using phantom C, which had much lower attenuation. Specifically, increased excess attenuation due to transfer of energy from the fundamental to the harmonics would be observed more in phantom C. The AC estimate increased from 0.57 to 0.67 dB/cm/MHz as the excitation levels increased from level one to six when using phantom B as a reference. In contrast, when using phantom C as reference, the estimated AC slope of phantom A decreased from 0.57 to 0.43 dB/cm/MHz as the excitation levels increased from level one to six. Therefore, use of a reference with different attenuation resulted in increased bias of AC estimates due to nonlinear distortion being this deviation larger when using low attenuating media.
KW - Attenuation coefficient
KW - nonlinearity parameter
KW - quantitative ultrasound
KW - spectral log difference
UR - http://www.scopus.com/inward/record.url?scp=85077608062&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077608062&partnerID=8YFLogxK
U2 - 10.1109/ULTSYM.2019.8925571
DO - 10.1109/ULTSYM.2019.8925571
M3 - Conference contribution
AN - SCOPUS:85077608062
T3 - IEEE International Ultrasonics Symposium, IUS
SP - 2416
EP - 2419
BT - 2019 IEEE International Ultrasonics Symposium, IUS 2019
PB - IEEE Computer Society
T2 - 2019 IEEE International Ultrasonics Symposium, IUS 2019
Y2 - 6 October 2019 through 9 October 2019
ER -