TY - JOUR
T1 - Effectiveness of the Execution and Prevention of Metric-Based Adversarial Attacks on Social Network Data
AU - Parulian, Nikolaus Nova
AU - Lu, Tiffany
AU - Mishra, Shubhanshu
AU - Avram, Mihai
AU - Diesner, Jana
N1 - Funding Information:
Funding: Research reported in this paper was sponsored in part by the Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation from here on. We also acknowledge Alaine Martaus’ help with editing this manuscript.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Observed social networks are often considered as proxies for underlying social networks. The analysis of observed networks oftentimes involves the identification of influential nodes via various centrality measures. This paper brings insights from research on adversarial attacks on machine learning systems to the domain of social networks by studying strategies by which an adversary can minimally perturb the observed network structure to achieve their target function of modifying the ranking of a target node according to centrality measures. This can represent the attempt of an adversary to boost or demote the degree to which others perceive individual nodes as influential or powerful. We study the impact of adversarial attacks on targets and victims, and identify metric-based security strategies to mitigate such attacks. We conduct a series of controlled experiments on synthetic network data to identify attacks that allow the adversary to achieve their objective with a single move. We then replicate the experiments with empirical network data. We run our experiments on common network topologies and use common centrality measures. We identify a small set of moves that result in the adversary achieving their objective. This set is smaller for decreasing centrality measures than for increasing them. For both synthetic and empirical networks, we observe that larger networks are less prone to adversarial attacks than smaller ones. Adversarial moves have a higher impact on cellular and small-world networks, while random and scale-free networks are harder to perturb. Also, empirical networks are harder to attack than synthetic networks. Using correlation analysis on our experimental results, we identify how combining measures with low correlation can aid in reducing the effectiveness of adversarial moves. Our results also advance the knowledge about the robustness of centrality measures to network perturbations. The notion of changing social network data to yield adversarial outcomes has practical implications, e.g., for information diffusion on social media, influence and power dynamics in social systems, and developing solutions to improving network security.
AB - Observed social networks are often considered as proxies for underlying social networks. The analysis of observed networks oftentimes involves the identification of influential nodes via various centrality measures. This paper brings insights from research on adversarial attacks on machine learning systems to the domain of social networks by studying strategies by which an adversary can minimally perturb the observed network structure to achieve their target function of modifying the ranking of a target node according to centrality measures. This can represent the attempt of an adversary to boost or demote the degree to which others perceive individual nodes as influential or powerful. We study the impact of adversarial attacks on targets and victims, and identify metric-based security strategies to mitigate such attacks. We conduct a series of controlled experiments on synthetic network data to identify attacks that allow the adversary to achieve their objective with a single move. We then replicate the experiments with empirical network data. We run our experiments on common network topologies and use common centrality measures. We identify a small set of moves that result in the adversary achieving their objective. This set is smaller for decreasing centrality measures than for increasing them. For both synthetic and empirical networks, we observe that larger networks are less prone to adversarial attacks than smaller ones. Adversarial moves have a higher impact on cellular and small-world networks, while random and scale-free networks are harder to perturb. Also, empirical networks are harder to attack than synthetic networks. Using correlation analysis on our experimental results, we identify how combining measures with low correlation can aid in reducing the effectiveness of adversarial moves. Our results also advance the knowledge about the robustness of centrality measures to network perturbations. The notion of changing social network data to yield adversarial outcomes has practical implications, e.g., for information diffusion on social media, influence and power dynamics in social systems, and developing solutions to improving network security.
KW - Adversarial attacks
KW - Centrality measures
KW - Network robustness
KW - Social network analysis
UR - http://www.scopus.com/inward/record.url?scp=85087782796&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087782796&partnerID=8YFLogxK
U2 - 10.3390/info11060306
DO - 10.3390/info11060306
M3 - Article
SN - 2078-2489
VL - 11
JO - Information (Switzerland)
JF - Information (Switzerland)
IS - 6
M1 - 306
ER -