Effect of Hydrogen on Creep Properties of SUS304 Austenitic Stainless Steel

Daisuke Takazaki, Toshihiro Tsuchiyama, Ryosuke Komoda, Mohsen Dadfarnia, Brian P. Somerday, Petros Sofronis, Masanobu Kubota

Research output: Contribution to journalArticlepeer-review

Abstract

The objective of this study is to derive mechanistic insight into the degradation of metals in high-temperature hydrogen in order to enable the safety of evolving hydrogen technologies that operate at elevated temperature. Creep testing was performed in argon and hydrogen gases under absolute pressure of 0.12 MPa at 873 K. The material was JIS SUS304 austenitic stainless steel. Results revealed that the creep life (time to failure) and creep ductility (strain to failure) of the SUS304 in hydrogen gas and in argon displayed opposite trends. While the creep life (time to failure) of the SUS304 in hydrogen gas was significantly shorter than that in argon, creep ductility (strain to failure) was higher in hydrogen. Associated with the relatively higher creep ductility, evidence of transgranular microvoid coalescence was more prevalent on fracture surfaces produced in hydrogen compared to those produced in argon. In addition, analysis of the steady-state creep relationships in hydrogen and argon indicated that the same creep mechanism operated in the two environments, which was deduced as dislocation creep. Regarding the mechanisms governing reduced creep life in hydrogen, the effects of decarburization, carbide formation, and the hydrogen-enhanced localized plasticity mechanism were investigated. It was confirmed that these effects were not responsible for the reduced creep life in hydrogen, at least within the creep life range of this study. Alternately, the plausible role of hydrogen was to enhance the vacancy density, which led to magnified lattice diffusion (self-diffusion) and associated dislocation climb. As a consequence, hydrogen accelerated the creep strain rate and shortened the creep life.

Original languageEnglish (US)
Pages (from-to)256-265
Number of pages10
JournalCorrosion
Volume77
Issue number3
DOIs
StatePublished - Mar 2021

Keywords

  • austenitic stainless steel
  • creep
  • high-temperature
  • hydrogen

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Effect of Hydrogen on Creep Properties of SUS304 Austenitic Stainless Steel'. Together they form a unique fingerprint.

Cite this