TY - GEN
T1 - Effect of design rail cant on concrete crosstie rail seat pressure distribution
AU - Ghosh, Arkaprabha
AU - Edwards, J. Riley
AU - Dersch, Marcus S.
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - Previous research has focused on the effect of rail cant on rail wear and wheel/rail interaction, indicating that a steeper rail cant results in increased wear on rails and wheels. However, no research has investigated the effect of rail cant on the crosstie rail seat pressure distribution. Past research at the University of Illinois at Urbana-Champaign (UIUC) looked into the effect of negative (reverse) rail cant on pressure distribution across the rail seat utilizing matrix-based tactile surface sensors (MBTSS) on artificially created rail seat wear profile at TTC, Pueblo. These results showed that the pressure distribution became more non uniform with increasing negative rail cant. This paper looks into the effect of 'design' rail cant on pressure distribution across the rail seat. Static tests were carried out on 1:30 and 1:40 cant crossties imparting a predefined sequence of vertical and lateral load combinations. MBTSS and potentiometers were used to measure pressure distribution and rail rotation respectively. The 1:30 cant distributed load more evenly than 1:40 cant at lateral to vertical force ratios greater than 0.4. The two rail cants did not show significant differences in the values of average pressure, contact area, or rail rotation.
AB - Previous research has focused on the effect of rail cant on rail wear and wheel/rail interaction, indicating that a steeper rail cant results in increased wear on rails and wheels. However, no research has investigated the effect of rail cant on the crosstie rail seat pressure distribution. Past research at the University of Illinois at Urbana-Champaign (UIUC) looked into the effect of negative (reverse) rail cant on pressure distribution across the rail seat utilizing matrix-based tactile surface sensors (MBTSS) on artificially created rail seat wear profile at TTC, Pueblo. These results showed that the pressure distribution became more non uniform with increasing negative rail cant. This paper looks into the effect of 'design' rail cant on pressure distribution across the rail seat. Static tests were carried out on 1:30 and 1:40 cant crossties imparting a predefined sequence of vertical and lateral load combinations. MBTSS and potentiometers were used to measure pressure distribution and rail rotation respectively. The 1:30 cant distributed load more evenly than 1:40 cant at lateral to vertical force ratios greater than 0.4. The two rail cants did not show significant differences in the values of average pressure, contact area, or rail rotation.
UR - http://www.scopus.com/inward/record.url?scp=84978802747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978802747&partnerID=8YFLogxK
U2 - 10.1115/JRC2016-5793
DO - 10.1115/JRC2016-5793
M3 - Conference contribution
AN - SCOPUS:84978802747
T3 - 2016 Joint Rail Conference, JRC 2016
BT - 2016 Joint Rail Conference, JRC 2016
PB - American Society of Mechanical Engineers
T2 - 2016 Joint Rail Conference, JRC 2016
Y2 - 12 April 2016 through 15 April 2016
ER -