TY - JOUR
T1 - Effect of Critical Factors Influencing Longitudinal Track Resistance Leveraging Laboratory Track Panel Pull Test Experimentation
AU - Dersch, Marcus S
AU - Potvin, Max
AU - Lima, Arthur De O
AU - Edwards, J. Riley
N1 - Funding Information:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research effort is funded by the Federal Railroad Administration (FRA), part of the United States Department of Transportation (U.S. DOT). J. Riley Edwards has been supported in part by the grants to the Illinois Rail Transportation and Engineering Center (RailTEC) from CN and Hanson Professional Services.
Publisher Copyright:
© National Academy of Sciences: Transportation Research Board 2023.
PY - 2023/8
Y1 - 2023/8
N2 - There are, on average, 12.5 Federal Railroad Administration reportable derailments per year on U.S. mainlines and sidings caused by “defective or missing spikes or rail fasteners.” Because fastener failures are most commonly caused by a combination of vertical, lateral, and longitudinal loads, it is important to quantify all loads placed on the fasteners to reduce the number of failed fasteners and increase rail safety. Multiple researchers have developed analytical models that leverage longitudinal track resistance and stiffness to quantify the fastener demands. Therefore, to support the refinement of these analytical models that leverage longitudinal track resistance and stiffness, track panel pull tests (TPPTs) were executed in the laboratory to expand on the values within the available literature. These TPPTs quantified the effect of sleeper type (i.e., timber versus concrete), given that 88% of previous studies have focused on concrete. Further, these novel tests quantified the effect of the fastening system, crib ballast height, shoulder width, and ballast condition on the panel’s longitudinal resistance and stiffness. From these experiments and the resulting analysis of data, multiple conclusions were drawn. For example, concrete sleeper panels exhibit 20% higher resistance than timber sleeper panels, disturbing ballast reduced the longitudinal resistance by 13% and stiffness by approximately 80%, and the crib, shoulder, and bottom ballast provide approximately 65%, 5%, and 30% of the total longitudinal resistance, respectively.
AB - There are, on average, 12.5 Federal Railroad Administration reportable derailments per year on U.S. mainlines and sidings caused by “defective or missing spikes or rail fasteners.” Because fastener failures are most commonly caused by a combination of vertical, lateral, and longitudinal loads, it is important to quantify all loads placed on the fasteners to reduce the number of failed fasteners and increase rail safety. Multiple researchers have developed analytical models that leverage longitudinal track resistance and stiffness to quantify the fastener demands. Therefore, to support the refinement of these analytical models that leverage longitudinal track resistance and stiffness, track panel pull tests (TPPTs) were executed in the laboratory to expand on the values within the available literature. These TPPTs quantified the effect of sleeper type (i.e., timber versus concrete), given that 88% of previous studies have focused on concrete. Further, these novel tests quantified the effect of the fastening system, crib ballast height, shoulder width, and ballast condition on the panel’s longitudinal resistance and stiffness. From these experiments and the resulting analysis of data, multiple conclusions were drawn. For example, concrete sleeper panels exhibit 20% higher resistance than timber sleeper panels, disturbing ballast reduced the longitudinal resistance by 13% and stiffness by approximately 80%, and the crib, shoulder, and bottom ballast provide approximately 65%, 5%, and 30% of the total longitudinal resistance, respectively.
KW - railroad infrastructure design and maintenance
KW - lab experimentation
KW - track
KW - longitudinal loads
KW - crossties
KW - ballast
UR - http://www.scopus.com/inward/record.url?scp=85167357748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167357748&partnerID=8YFLogxK
U2 - 10.1177/03611981231155420
DO - 10.1177/03611981231155420
M3 - Article
SN - 0361-1981
VL - 2677
SP - 54
EP - 65
JO - Transportation Research Record
JF - Transportation Research Record
IS - 8
M1 - 036119812311554
ER -