Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials

Jesus N. Eiras, Tribikram Kundu, John S. Popovics, José Monzó, María V. Borrachero, Jordi Payá

Research output: Contribution to journalArticle

Abstract

Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.

Original languageEnglish (US)
Article number11004
JournalOptical Engineering
Volume55
Issue number1
DOIs
StatePublished - Jan 1 2016

Keywords

  • carbonation
  • cement-based materials
  • nonlinear acoustic

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Engineering(all)

Fingerprint Dive into the research topics of 'Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials'. Together they form a unique fingerprint.

  • Cite this