Effect of additives on shape evolution during electrodeposition: III. Trench infill for on-chip interconnects

Yan Qin, Xiaohai Li, Feng Xue, Philippe M. Vereecken, Panayotis Andricacos, Hariklia Deligianni, Richard D. Braatz, Richard C Alkire

Research output: Contribution to journalArticle

Abstract

Experimental observations are reported on the range of compositions and geometries for which void-free "superfilling" of rectangular trenches occurs during copper electrodeposition from acid sulfate solutions containing poly(ethylene glycol), chloride, bis(sodium sulfopropyl)disulfide, and 1-(2-hydroxyethyl)-2-imidazolidine-thione. Observations were compared with predictions made with a model that included 17 species and reaction intermediates that participated in a network of 15 surface reactions as well as surface diffusion, and three homogeneous reactions. The numerical algorithm was designed to handle stiffness arising from reaction terms and computational efficiency required for interface movement. Accurately estimated values of the most sensitive model parameters were used to carry out simulations of shape evolution. One assumption was needed to bring the model into agreement with experimental trends for the "window" of superfilling conditions over the range investigated experimentally. Numerical results were found to track behavior typically observed during superfilling, such as an incubation period, bottom-up acceleration, and bump formation. Predictions of the distribution of adsorbed species during trench infill support the interpretation that superfilling arises from generation of a catalytic accelerator species within the trench in the presence of transport-limited competitive adsorption of suppressor and inhibitor additives.

Original languageEnglish (US)
JournalJournal of the Electrochemical Society
Volume155
Issue number3
DOIs
StatePublished - Jan 29 2008

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Effect of additives on shape evolution during electrodeposition: III. Trench infill for on-chip interconnects'. Together they form a unique fingerprint.

  • Cite this