Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula

Patricia M. Oba, Sara Vidal, Romain Wyss, Yong Miao, Yemi Adesokan, Kelly S. Swanson

Research output: Contribution to journalArticlepeer-review


Milk oligosaccharides (MO) confer multiple potential physiological benefits, such as the selective growth promotion of beneficial microbiota, inhibition of enteric pathogen growth and adhesion to enterocytes, maturation of the gut mucosal barrier, and modulation of the gastrointestinal immune system. This study was conducted to determine the fermentation potential of GNU100, an animal MO biosimilar, in an in vitro system using healthy canine and feline fecal inocula. Single feline and single canine fecal samples were used to inoculate a batch fermentation system. Tubes containing a blank control (BNC), GNU100 at 0.5% (5 g/L; GNU1), or GNU100 at 1.0% (10 g/L; GNU2) were incubated for 48 h. Gas pressure, pH, lactate, shortchain fatty acids (SCFA; acetate, propionate, and butyrate), and branched-chain fatty acids (BCFA; isobutyrate, isovalerate, and valerate) were measured after 6, 24, and 48 h. Ammonium and microbiota (total bacteria by flow cytometry and Pet-16Seq; Lactobacillus and Bifidobacterium by quantitative polymerase chain reaction ) were measured after 24 and 48 h. Data were analyzed using the Mixed Models procedure of SAS. Substrates were considered to be a fixed effect and replicates considered to be a random effect. Tukey's multiple comparison analysis was used to compare least squares means, with differences considered significant with P < 0.05. In feline and canine incubations, SCFA increases were greater (P < 0.0001) in GNU100 compared with BNC, with acetate making up the largest SCFA proportion (P < 0.0001). GNU100 cultures led to greater increases (P < 0.0001) in lactate and ammonium than BNC in the feline incubations. GNU100 cultures led to greater increases (P < 0.0001) in ammonium than BNC in canine incubations and greater increases (P < 0.0001) in BCFA than BNC in feline incubations. Pet-16Seq microbial profiles from the feline and canine fecal incubations exhibited a modulation after GNU100 fermentation, with a reduction of the genera Escherichia/Shigella and Salmonella. In feline incubations, Bifidobacterium populations had greater increases (P < 0.0001) in GNU100 than BNC. In feline incubations, Lactobacillus populations had greater increases (P = 0.01) in GNU100 than BNC, with GNU1 leading to greater increases (P = 0.02) in Lactobacillus than BNC tubes in canine incubations. Overall, this study demonstrated that GNU100 was fermented in an in vitro fermentation system inoculated with canine and feline microbiota, resulting in the growth of beneficial bacteria and the production of SCFA, BCFA, and ammonium.

Original languageEnglish (US)
Article numberskaa273
JournalJournal of animal science
Issue number9
StatePublished - 2020


  • Cat nutrition
  • Colonic fermentation
  • Dog nutrition
  • Gastrointestinal functionality
  • Microbiome
  • Short-chain fatty acids

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics


Dive into the research topics of 'Effect of a novel animal milk oligosaccharide biosimilar on the gut microbial communities and metabolites of in vitro incubations using feline and canine fecal inocula'. Together they form a unique fingerprint.

Cite this