Abstract
We study the maximum edge-disjoint paths problem (MEDP). We are given a graph G = (V, E) and a set T = {s 1t 1, s 2t 2, ...,s kt k} of pairs of vertices: the objective is to find the maximum number of pairs in T that can be connected via edge-disjoint paths. Our main result is a poly-logarithmic approximation for MEDP on undirected planar graphs if a congestion of 2 is allowed, that is, we allow up to 2 paths to share an edge. Prior to our work, for any constant congestion, only a polynomial-factor approximation was known for planar graphs although much stronger results are known for some special cases such as grids and grid-like graphs. We note that the natural multi-commodity flow relaxation of the problem has an integrality gap Ω(√|V|) even on planar graphs when no congestion is allowed. Our starting point is the same relaxation and our result implies that the integrality gap shrinks to a poly-logarithmic factor once 2 paths are allowed per edge. Our result also extends to the unsplittable flow problem and the maximum integer multicommodity flow problem. A set X ⊆ V is well-linked if for each S ⊂ V, |δ(S)| ≥ min{|S ∩ X|, |(V - S) D X|}. The heart of our approach is to show that in any undirected planar graph, given any matching M on a well-linked set X, we can route Ω(|M|) pairs in M with a congestion of 2. Moreover, all pairs in M can be routed with constant congestion for a sufficiently large constant. This results also yields a different proof of a theorem of Klein, Plotkin, and Rao that shows an O(1) maxflow-mincut gap for uniform multicommodity flow instances in planar graphs. The framework developed in this paper applies to general graphs as well. If a certain graph theoretic conjecture is true, it will yield poly-logarithmic integrality gap for MEDP with constant congestion.
Original language | English (US) |
---|---|
Pages (from-to) | 71-80 |
Number of pages | 10 |
Journal | Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS |
State | Published - 2004 |
Externally published | Yes |
Event | Proceedings - 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2004 - Rome, Italy Duration: Oct 17 2004 → Oct 19 2004 |
ASJC Scopus subject areas
- General Engineering