Abstract

3D printing is a diverse field, in particular for biological or bioengineering applications. As a result, research teams working in this area are often multidisciplinary. A (bio) 3D printer in this research environment should balance performance with ease of use in order to enable system adjustments and operation for all machine users from a wide range of disciplines. This work presents results in the development of an easy-to-use fabrication system capable of producing rectilinear bone scaffolds. Common motion control problems, which are barriers to ease of use, are addressed and implemented in a way that researchers outside of the controls field could easily understand. A dynamic model of a 3-stage position system for bone scaffold fabrication is presented. Further, control design for a feedforward plus feedback controller and a user-friendly ILC feedforward compensator is outlined. The ability of the (bio) 3D printer to print bone scaffolds and the effectiveness of the control architecture is demonstrated.

Original languageEnglish (US)
Title of host publicationMechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791858288
DOIs
StatePublished - Jan 1 2017
EventASME 2017 Dynamic Systems and Control Conference, DSCC 2017 - Tysons, United States
Duration: Oct 11 2017Oct 13 2017

Publication series

NameASME 2017 Dynamic Systems and Control Conference, DSCC 2017
Volume2

Other

OtherASME 2017 Dynamic Systems and Control Conference, DSCC 2017
CountryUnited States
CityTysons
Period10/11/1710/13/17

Fingerprint

3D printers
Scaffolds
Bone
Fabrication
Motion control
Printing
Dynamic models
Feedback
Controllers

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Cite this

Armstrong, A., Alleyne, A. G., & Wagoner Johnson, A. J. (2017). Easy-to-use 3D printer for fabrication of biological scaffolds. In Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications (ASME 2017 Dynamic Systems and Control Conference, DSCC 2017; Vol. 2). American Society of Mechanical Engineers. https://doi.org/10.1115/DSCC2017-5147

Easy-to-use 3D printer for fabrication of biological scaffolds. / Armstrong, Ashley; Alleyne, Andrew G; Wagoner Johnson, Amy Jaye.

Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications. American Society of Mechanical Engineers, 2017. (ASME 2017 Dynamic Systems and Control Conference, DSCC 2017; Vol. 2).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Armstrong, A, Alleyne, AG & Wagoner Johnson, AJ 2017, Easy-to-use 3D printer for fabrication of biological scaffolds. in Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications. ASME 2017 Dynamic Systems and Control Conference, DSCC 2017, vol. 2, American Society of Mechanical Engineers, ASME 2017 Dynamic Systems and Control Conference, DSCC 2017, Tysons, United States, 10/11/17. https://doi.org/10.1115/DSCC2017-5147
Armstrong A, Alleyne AG, Wagoner Johnson AJ. Easy-to-use 3D printer for fabrication of biological scaffolds. In Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications. American Society of Mechanical Engineers. 2017. (ASME 2017 Dynamic Systems and Control Conference, DSCC 2017). https://doi.org/10.1115/DSCC2017-5147
Armstrong, Ashley ; Alleyne, Andrew G ; Wagoner Johnson, Amy Jaye. / Easy-to-use 3D printer for fabrication of biological scaffolds. Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications. American Society of Mechanical Engineers, 2017. (ASME 2017 Dynamic Systems and Control Conference, DSCC 2017).
@inproceedings{a89f64bae0e84b8c80f193a5016f3a16,
title = "Easy-to-use 3D printer for fabrication of biological scaffolds",
abstract = "3D printing is a diverse field, in particular for biological or bioengineering applications. As a result, research teams working in this area are often multidisciplinary. A (bio) 3D printer in this research environment should balance performance with ease of use in order to enable system adjustments and operation for all machine users from a wide range of disciplines. This work presents results in the development of an easy-to-use fabrication system capable of producing rectilinear bone scaffolds. Common motion control problems, which are barriers to ease of use, are addressed and implemented in a way that researchers outside of the controls field could easily understand. A dynamic model of a 3-stage position system for bone scaffold fabrication is presented. Further, control design for a feedforward plus feedback controller and a user-friendly ILC feedforward compensator is outlined. The ability of the (bio) 3D printer to print bone scaffolds and the effectiveness of the control architecture is demonstrated.",
author = "Ashley Armstrong and Alleyne, {Andrew G} and {Wagoner Johnson}, {Amy Jaye}",
year = "2017",
month = "1",
day = "1",
doi = "10.1115/DSCC2017-5147",
language = "English (US)",
series = "ASME 2017 Dynamic Systems and Control Conference, DSCC 2017",
publisher = "American Society of Mechanical Engineers",
booktitle = "Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications",

}

TY - GEN

T1 - Easy-to-use 3D printer for fabrication of biological scaffolds

AU - Armstrong, Ashley

AU - Alleyne, Andrew G

AU - Wagoner Johnson, Amy Jaye

PY - 2017/1/1

Y1 - 2017/1/1

N2 - 3D printing is a diverse field, in particular for biological or bioengineering applications. As a result, research teams working in this area are often multidisciplinary. A (bio) 3D printer in this research environment should balance performance with ease of use in order to enable system adjustments and operation for all machine users from a wide range of disciplines. This work presents results in the development of an easy-to-use fabrication system capable of producing rectilinear bone scaffolds. Common motion control problems, which are barriers to ease of use, are addressed and implemented in a way that researchers outside of the controls field could easily understand. A dynamic model of a 3-stage position system for bone scaffold fabrication is presented. Further, control design for a feedforward plus feedback controller and a user-friendly ILC feedforward compensator is outlined. The ability of the (bio) 3D printer to print bone scaffolds and the effectiveness of the control architecture is demonstrated.

AB - 3D printing is a diverse field, in particular for biological or bioengineering applications. As a result, research teams working in this area are often multidisciplinary. A (bio) 3D printer in this research environment should balance performance with ease of use in order to enable system adjustments and operation for all machine users from a wide range of disciplines. This work presents results in the development of an easy-to-use fabrication system capable of producing rectilinear bone scaffolds. Common motion control problems, which are barriers to ease of use, are addressed and implemented in a way that researchers outside of the controls field could easily understand. A dynamic model of a 3-stage position system for bone scaffold fabrication is presented. Further, control design for a feedforward plus feedback controller and a user-friendly ILC feedforward compensator is outlined. The ability of the (bio) 3D printer to print bone scaffolds and the effectiveness of the control architecture is demonstrated.

UR - http://www.scopus.com/inward/record.url?scp=85036620140&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85036620140&partnerID=8YFLogxK

U2 - 10.1115/DSCC2017-5147

DO - 10.1115/DSCC2017-5147

M3 - Conference contribution

T3 - ASME 2017 Dynamic Systems and Control Conference, DSCC 2017

BT - Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications

PB - American Society of Mechanical Engineers

ER -