Early-stage design of rheologically complex materials via material function design targets

N. Ashwin Bharadwaj, James T. Allison, Randy H. Ewoldt

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Rheological material properties are high-dimensional function-valued quantities, such as frequency-dependent viscoelastic moduli or non-Newtonian shear viscosity. Here we describe a process to model and optimize design targets for such rheological material functions. For linear viscoelastic systems, we demonstrate that one can avoid specific a priori assumptions of spring-dashpot topology by writing governing equations in terms of a time-dependent relaxation modulus function. Our approach embraces rheological design freedom, connecting system-level performance to optimal material functions that transcend specific material classes or structure. This technique is therefore material agnostic, applying to any material class including polymers, colloids, metals, composites, or any rheologically complex material. These early-stage design targets allow for broadly creative ideation of possible material solutions, which can then be used for either material-specific selection or later-stage design of novel materials.

Original languageEnglish (US)
Title of host publication39th Design Automation Conference
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791855881
DOIs
StatePublished - 2013
EventASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013 - Portland, OR, United States
Duration: Aug 4 2013Aug 7 2013

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume3 A

Other

OtherASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2013
Country/TerritoryUnited States
CityPortland, OR
Period8/4/138/7/13

ASJC Scopus subject areas

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Early-stage design of rheologically complex materials via material function design targets'. Together they form a unique fingerprint.

Cite this