TY - JOUR
T1 - Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus
AU - Pangratz-Fuehrer, Susanne
AU - Sieghart, Werner
AU - Rudolph, Uwe
AU - Parada, Isabel
AU - Huguenard, John R.
N1 - Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016/3/1
Y1 - 2016/3/1
N2 - The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABAA receptor (GABAAR)- mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABAARs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABAAR activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5- containing GABAARs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABAAR subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
AB - The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABAA receptor (GABAAR)- mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABAARs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABAAR activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5- containing GABAARs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABAAR subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
KW - GABAR α5
KW - IPSCs
KW - Mouse
KW - Subunit turnover
KW - Tonic current
UR - http://www.scopus.com/inward/record.url?scp=84984794009&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84984794009&partnerID=8YFLogxK
U2 - 10.1152/jn.00905.2015
DO - 10.1152/jn.00905.2015
M3 - Article
C2 - 26631150
AN - SCOPUS:84984794009
SN - 0022-3077
VL - 115
SP - 1183
EP - 1195
JO - Journal of neurophysiology
JF - Journal of neurophysiology
IS - 3
ER -