TY - JOUR
T1 - Early life iron deficiency impairs spatial cognition in neonatal piglets
AU - Rytych, Jennifer L.
AU - Elmore, Monica R.P.
AU - Burton, Michael D.
AU - Conrad, Matthew S.
AU - Donovan, Sharon M.
AU - Dilger, Ryan N.
AU - Johnson, Rodney W.
PY - 2012/11/1
Y1 - 2012/11/1
N2 - Iron deficiency is common throughout the world and has been linked to cognitive impairments. Using neonatal piglets to model human infants, we assessed the impact of iron deficiency on spatial learning and memory. Artificially reared piglets were fed 1 of 3 liquid diets with varying concentrations of iron: control (CON), mildly deficient (MID), or severely deficient (SID; 100, 25.0, or 10.0 mg iron/kg milk solids, respectively) for 4 wk. Relative to CON, SID and MID piglets had reduced hemoglobin (P < 0.05) as well as magenta skin color (P < 0.001), which correlated with hematocrit (R2 = 0.76; P < 0.001). SID and MID hemoglobin differed at wk 3 and 4 (P < 0.05). In a hippocampal-dependent, spatial, T-maze task, SID piglets were unable to acquire the task (post hoc contrast: first vs. last day of acquisition), while MID piglets demonstrated deficits in reversal learning (P = 0.032). Iron concentrations in the liver (P < 0.001), serum (P = 0.003), and hippocampus (P = 0.004), but not prefrontal cortex, were lower in MID and SID compared with CON piglets. The level of the transferrin receptor mRNA (TFR) was greater in the prefrontal cortex of CON piglets than in MID and SID piglets (P = 0.001) but not the hippocampus. Gene expression of several neurotrophic factors and proinflammatory cytokines, as well as whole-brain and hippocampal volume, were not affected by dietary treatment. In conclusion, neonatal iron deficiency leads to cognitive impairment, which may be due in part to a reduced iron concentration in the hippocampus.
AB - Iron deficiency is common throughout the world and has been linked to cognitive impairments. Using neonatal piglets to model human infants, we assessed the impact of iron deficiency on spatial learning and memory. Artificially reared piglets were fed 1 of 3 liquid diets with varying concentrations of iron: control (CON), mildly deficient (MID), or severely deficient (SID; 100, 25.0, or 10.0 mg iron/kg milk solids, respectively) for 4 wk. Relative to CON, SID and MID piglets had reduced hemoglobin (P < 0.05) as well as magenta skin color (P < 0.001), which correlated with hematocrit (R2 = 0.76; P < 0.001). SID and MID hemoglobin differed at wk 3 and 4 (P < 0.05). In a hippocampal-dependent, spatial, T-maze task, SID piglets were unable to acquire the task (post hoc contrast: first vs. last day of acquisition), while MID piglets demonstrated deficits in reversal learning (P = 0.032). Iron concentrations in the liver (P < 0.001), serum (P = 0.003), and hippocampus (P = 0.004), but not prefrontal cortex, were lower in MID and SID compared with CON piglets. The level of the transferrin receptor mRNA (TFR) was greater in the prefrontal cortex of CON piglets than in MID and SID piglets (P = 0.001) but not the hippocampus. Gene expression of several neurotrophic factors and proinflammatory cytokines, as well as whole-brain and hippocampal volume, were not affected by dietary treatment. In conclusion, neonatal iron deficiency leads to cognitive impairment, which may be due in part to a reduced iron concentration in the hippocampus.
UR - http://www.scopus.com/inward/record.url?scp=84869121628&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84869121628&partnerID=8YFLogxK
U2 - 10.3945/jn.112.165522
DO - 10.3945/jn.112.165522
M3 - Article
C2 - 23014488
AN - SCOPUS:84869121628
SN - 0022-3166
VL - 142
SP - 2050
EP - 2056
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 11
ER -