DynaMiTE: Discovering Explosive Topic Evolutions with User Guidance

Nishant Balepur, Shivam Agarwal, Karthik Venkat Ramanan, Susik Yoon, Jiawei Han, Diyi Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Dynamic topic models (DTMs) analyze text streams to capture the evolution of topics. Despite their popularity, existing DTMs are either fully supervised, requiring expensive human annotations, or fully unsupervised, producing topic evolutions that often do not cater to a user's needs. Further, the topic evolutions produced by DTMs tend to contain generic terms that are not indicative of their designated time steps. To address these issues, we propose the task of discriminative dynamic topic discovery. This task aims to discover topic evolutions from temporal corpora that distinctly align with a set of user-provided category names and uniquely capture topics at each time step. We solve this task by developing DynaMiTE, a framework that ensembles semantic similarity, category indicative, and time indicative scores to produce informative topic evolutions. Through experiments on three diverse datasets, including the use of a newly-designed human evaluation experiment, we demonstrate that DynaMiTE is a practical and efficient framework for helping users discover high-quality topic evolutions suited to their interests.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics, ACL 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages194-217
Number of pages24
ISBN (Electronic)9781959429623
StatePublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'DynaMiTE: Discovering Explosive Topic Evolutions with User Guidance'. Together they form a unique fingerprint.

Cite this