Dynamic Graph Node Classification via Time Augmentation

Jiarui Sun, Mengting Gu, Chin Chia Michael Yeh, Yujie Fan, Girish Chowdhary, Wei Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Node classification for graph-structured data aims to classify nodes whose labels are unknown. While studies on static graphs are prevalent, few studies have focused on dynamic graph node classification. Node classification on dynamic graphs is challenging for two reasons. First, the model needs to capture both structural and temporal information, particularly on dynamic graphs with a long history and require large receptive fields. Second, model scalability becomes a significant concern as the size of the dynamic graph increases. To address these problems, we propose the Time Augmented Dynamic Graph Neural Network (TADGNN) framework. TADGNN consists of two modules: 1) a time augmentation module that captures the temporal evolution of nodes across time structurally, creating a time-augmented spatio-temporal graph, and 2) an information propagation module that learns the dynamic representations for each node across time using the constructed time-augmented graph. We perform node classification experiments on four dynamic graph benchmarks. Experimental results demonstrate that TADGNN framework outperforms several static and dynamic state-of-the-art (SOTA) GNN models while demonstrating superior scalability. We also conduct theoretical and empirical analyses to validate the efficiency of the proposed method.

Original languageEnglish (US)
Title of host publicationProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022
EditorsShusaku Tsumoto, Yukio Ohsawa, Lei Chen, Dirk Van den Poel, Xiaohua Hu, Yoichi Motomura, Takuya Takagi, Lingfei Wu, Ying Xie, Akihiro Abe, Vijay Raghavan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages800-805
Number of pages6
ISBN (Electronic)9781665480451
DOIs
StatePublished - 2022
Externally publishedYes
Event2022 IEEE International Conference on Big Data, Big Data 2022 - Osaka, Japan
Duration: Dec 17 2022Dec 20 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Big Data, Big Data 2022

Conference

Conference2022 IEEE International Conference on Big Data, Big Data 2022
Country/TerritoryJapan
CityOsaka
Period12/17/2212/20/22

Keywords

  • dynamic graph
  • graph neural network
  • node classification

ASJC Scopus subject areas

  • Modeling and Simulation
  • Computer Networks and Communications
  • Information Systems
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Dynamic Graph Node Classification via Time Augmentation'. Together they form a unique fingerprint.

Cite this