@inproceedings{5f8d8ed3b2d140ad9a2bc0222f012a16,
title = "Dynamic Graph Node Classification via Time Augmentation",
abstract = "Node classification for graph-structured data aims to classify nodes whose labels are unknown. While studies on static graphs are prevalent, few studies have focused on dynamic graph node classification. Node classification on dynamic graphs is challenging for two reasons. First, the model needs to capture both structural and temporal information, particularly on dynamic graphs with a long history and require large receptive fields. Second, model scalability becomes a significant concern as the size of the dynamic graph increases. To address these problems, we propose the Time Augmented Dynamic Graph Neural Network (TADGNN) framework. TADGNN consists of two modules: 1) a time augmentation module that captures the temporal evolution of nodes across time structurally, creating a time-augmented spatio-temporal graph, and 2) an information propagation module that learns the dynamic representations for each node across time using the constructed time-augmented graph. We perform node classification experiments on four dynamic graph benchmarks. Experimental results demonstrate that TADGNN framework outperforms several static and dynamic state-of-the-art (SOTA) GNN models while demonstrating superior scalability. We also conduct theoretical and empirical analyses to validate the efficiency of the proposed method.",
keywords = "dynamic graph, graph neural network, node classification",
author = "Jiarui Sun and Mengting Gu and Yeh, {Chin Chia Michael} and Yujie Fan and Girish Chowdhary and Wei Zhang",
note = "Publisher Copyright: {\textcopyright} 2022 IEEE.; 2022 IEEE International Conference on Big Data, Big Data 2022 ; Conference date: 17-12-2022 Through 20-12-2022",
year = "2022",
doi = "10.1109/BigData55660.2022.10020941",
language = "English (US)",
series = "Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "800--805",
editor = "Shusaku Tsumoto and Yukio Ohsawa and Lei Chen and {Van den Poel}, Dirk and Xiaohua Hu and Yoichi Motomura and Takuya Takagi and Lingfei Wu and Ying Xie and Akihiro Abe and Vijay Raghavan",
booktitle = "Proceedings - 2022 IEEE International Conference on Big Data, Big Data 2022",
address = "United States",
}