Dynamic geometric data structures via shallow cuttings

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We present new results on a number of fundamental problems about dynamic geometric data structures: 1. We describe the first fully dynamic data structures with sublinear amortized update time for maintaining (i) the number of vertices or the volume of the convex hull of a 3D point set, (ii) the largest empty circle for a 2D point set, (iii) the Hausdorff distance between two 2D point sets, (iv) the discrete 1-center of a 2D point set, (v) the number of maximal (i.e., skyline) points in a 3D point set. The update times are near n11/12 for (i) and (ii), n7/8 for (iii) and (iv), and n2/3 for (v). Previously, sublinear bounds were known only for restricted “semi-online” settings [Chan, SODA 2002]. 2. We slightly improve previous fully dynamic data structures for answering extreme point queries for the convex hull of a 3D point set and nearest neighbor search for a 2D point set. The query time is O(log2 n), and the amortized update time is O(log4 n) instead of O(log5 n) [Chan, SODA 2006; Kaplan et al., SODA 2017]. 3. We also improve previous fully dynamic data structures for maintaining the bichromatic closest pair between two 2D point sets and the diameter of a 2D point set. The amortized update time is O(log4 n) instead of O(log7 n) [Eppstein 1995; Chan, SODA 2006; Kaplan et al., SODA 2017].

Original languageEnglish (US)
Title of host publication35th International Symposium on Computational Geometry, SoCG 2019
EditorsGill Barequet, Yusu Wang
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771047
DOIs
StatePublished - Jun 1 2019
Event35th International Symposium on Computational Geometry, SoCG 2019 - Portland, United States
Duration: Jun 18 2019Jun 21 2019

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume129
ISSN (Print)1868-8969

Conference

Conference35th International Symposium on Computational Geometry, SoCG 2019
Country/TerritoryUnited States
CityPortland
Period6/18/196/21/19

Keywords

  • Closest pair
  • Convex hulls
  • Dynamic data structures
  • Nearest neighbor search
  • Shallow cuttings

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Dynamic geometric data structures via shallow cuttings'. Together they form a unique fingerprint.

Cite this