Dynamic functional brain connectivity for face perception

Yuan Yang, Yihong Qiu, Alfred C. Schouten

Research output: Contribution to journalArticlepeer-review


Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive processing. We investigated the dynamic functional connectivity in face perception by analyzing time-dependent EEG phase synchronization in four different frequency bands: theta (4–7 Hz), alpha (8–14 Hz), beta (15–24 Hz), and gamma (25–45 Hz) bands in the early stages of face processing from 30 to 300 ms. High-density EEG were recorded from subjects who were passively viewing faces, buildings, and chairs. The dynamic connectivity within the core system and between the extended system were investigated. Significant differences between faces and non-faces mainly appear in theta band connectivity: (1) at the time segment of 90–120 ms between parietal area and occipito-temporal area in the right hemisphere, and (2) at the time segment of 150–180 ms between bilateral occipito-temporal areas. These results indicate (1) the importance of theta-band connectivity in the face-sensitive processing, and (2) that different parts of network are involved for the initial stage of face categorization and the stage of face structural encoding.

Original languageEnglish (US)
Article number662
JournalFrontiers in Human Neuroscience
Issue numberDEC
StatePublished - Dec 8 2015
Externally publishedYes


  • Dynamic functional connectivity
  • ERP
  • Face perception
  • High-density EEG
  • Phase lag index

ASJC Scopus subject areas

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience


Dive into the research topics of 'Dynamic functional brain connectivity for face perception'. Together they form a unique fingerprint.

Cite this