DyDiff-VAE: A Dynamic Variational Framework for Information Diffusion Prediction

Ruijie Wang, Zijie Huang, Shengzhong Liu, Huajie Shao, Dongxin Liu, Jinyang Li, Tianshi Wang, Dachun Sun, Shuochao Yao, Tarek Abdelzaher

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper describes a novel diffusion model, DyDiff-VAE, for information diffusion prediction on social media. Given the initial content and a sequence of forwarding users, DyDiff-VAE aims to estimate the propagation likelihood for other potential users and predict the corresponding user rankings. Inferring user interests from diffusion data lies the foundation of diffusion prediction, because users often forward the information in which they are interested or the information from those who share similar interests. Their interests also evolve over time as the result of the dynamic social influence from neighbors and the time-sensitive information gained inside/outside the social media. Existing works fail to model users' intrinsic interests from the diffusion data and assume user interests remain static along the time. DyDiff-VAE advances the state of the art in two directions: (i) We propose a dynamic encoder to infer the evolution of user interests from observed diffusion data. (ii) We propose a dual attentive decoder to estimate the propagation likelihood by integrating information from both the initial cascade content and the forwarding user sequence. Extensive experiments on four real-world datasets from Twitter and Youtube demonstrate the advantages of the proposed model; we show that it achieves 43.3%relative gains over the best baseline on average. Moreover, it has the lowest run-time compared with recurrent neural network based models.

Original languageEnglish (US)
Title of host publicationSIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery
Pages163-172
Number of pages10
ISBN (Electronic)9781450380379
DOIs
StatePublished - Jul 11 2021
Event44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021 - Virtual, Online, Canada
Duration: Jul 11 2021Jul 15 2021

Publication series

NameSIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference44th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2021
Country/TerritoryCanada
CityVirtual, Online
Period7/11/217/15/21

Keywords

  • attention
  • deep learning
  • diffusion prediction
  • social networks
  • variational autoencoder

ASJC Scopus subject areas

  • Software
  • Computer Graphics and Computer-Aided Design
  • Information Systems

Fingerprint

Dive into the research topics of 'DyDiff-VAE: A Dynamic Variational Framework for Information Diffusion Prediction'. Together they form a unique fingerprint.

Cite this