Durability assessment of fabric-reinforced shape-memory polymer composites

G. P. Tandon, K. Goecke, K. Cable, J. Baur

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The present study is a baseline assessment of the environmental durability of current state-of-the-art, fabric-reinforced shape memory materials being considered for morphing applications. Tensile dog-bone-shaped specimens are cut along three different directions, namely, along 0°, perpendicular (90°), and at 45° to the orientation of the fabric. The shape memory properties and elastomeric response before and after relevant environmental exposure to water at 49°C for 4 days, in lube oil at room temperature and at 49°C for 24 hours, and after exposure to Xenon Arc (63°C, 18 minutes water and light/102 minutes light only) and spectral intensity of 0.3 to 0.4 watts/m 2 for 125 cycles (250 hours exposure time) are measured. Weight loss of the as-received and conditioned specimens is monitored while the dog-bone-shaped specimens are subjected to recovery following fixation. Parameters being investigated include stored strain, recovery stress, shape fixity, shape recovery, and modulus in the glassy and rubbery state.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2009, SMASIS2009
Pages23-32
Number of pages10
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2009 - Oxnard, CA, United States
Duration: Sep 21 2009Sep 23 2009

Publication series

NameProceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems 2009, SMASIS2009
Volume1

Conference

Conference2009 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS2009
Country/TerritoryUnited States
CityOxnard, CA
Period9/21/099/23/09

ASJC Scopus subject areas

  • Computational Mechanics
  • Mechanics of Materials

Fingerprint

Dive into the research topics of 'Durability assessment of fabric-reinforced shape-memory polymer composites'. Together they form a unique fingerprint.

Cite this