Abstract
This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-Axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.
Original language | English (US) |
---|---|
Article number | 035012 |
Journal | Plasma Sources Science and Technology |
Volume | 27 |
Issue number | 3 |
DOIs | |
State | Published - Mar 27 2018 |
Keywords
- CARS
- DBD
- PLIF
- reacting JICF
ASJC Scopus subject areas
- Condensed Matter Physics