Dual Coil Patterned Ultra-Thin Silicon Film Enable by Double-Sided Process

Chang Hee Son, Sangyeop Lee, Placid M. Ferreira, Seok Kim

Research output: Contribution to journalArticlepeer-review


Double-sided microfabrication process on an ultra-thin silicon film has rarely been attempted due to the challenges in terms of the preparation and handling of a thin film in spite of its promising fabrication potentials. Such a process allows for doubling the thin film device density or providing dual functionalities for a thin film depending on whether the front and back sides of a thin film are processed identically or distinctively. Here, a novel double-sided thin film processing strategy is introduced by realizing a dual coil patterned ultra-thin silicon film that is working as an actuating or energy harvesting system. Experimentally, a dual coil patterned thin film enabled using the introduced approach shows remarkably enhanced device performance when compared with a single coil patterned counterpart. Furthermore, a multiphysics simulation model is developed and the resultant modeling data validate the experimentally measured performance enhancement. Finally, the structural durability of the thin film upon cyclic loading is tested and its diverse vibration modes are investigated.

Original languageEnglish (US)
Article number2300158
JournalAdvanced Materials Interfaces
Issue number16
StatePublished - Jun 6 2023


  • actuators
  • double-sided process
  • energy harvesters
  • multiphysics simulation
  • ultra-thin silicon
  • vibrating mirrors

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Dual Coil Patterned Ultra-Thin Silicon Film Enable by Double-Sided Process'. Together they form a unique fingerprint.

Cite this