DSDNet: Deep Structured Self-driving Network

Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, Raquel Urtasun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we propose the Deep Structured self-Driving Network (DSDNet), which performs object detection, motion prediction, and motion planning with a single neural network. Towards this goal, we develop a deep structured energy based model which considers the interactions between actors and produces socially consistent multimodal future predictions. Furthermore, DSDNet explicitly exploits the predicted future distributions of actors to plan a safe maneuver by using a structured planning cost. Our sample-based formulation allows us to overcome the difficulty in probabilistic inference of continuous random variables. Experiments on a number of large-scale self driving datasets demonstrate that our model significantly outperforms the state-of-the-art.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2020 - 16th European Conference 2020, Proceedings
EditorsAndrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm
PublisherSpringer
Pages156-172
Number of pages17
ISBN (Print)9783030585884
DOIs
StatePublished - 2020
Externally publishedYes
Event16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom
Duration: Aug 23 2020Aug 28 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12366 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference16th European Conference on Computer Vision, ECCV 2020
Country/TerritoryUnited Kingdom
CityGlasgow
Period8/23/208/28/20

Keywords

  • Autonomous driving
  • Motion planning
  • Motion prediction

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'DSDNet: Deep Structured Self-driving Network'. Together they form a unique fingerprint.

Cite this