DRGCODER: Explainable Clinical Coding for the Early Prediction of Diagnostic-Related Groups

Daniel Hajialigol, Derek Kaknes, Tanner Barbour, Daphne Yao, Chris North, Jimeng Sun, David Liem, Xuan Wang

Research output: Contribution to conferencePaperpeer-review

Abstract

Medical claim coding is the process of transforming medical records, usually presented as free texts written by clinicians, or discharge summaries, into structured codes in a classification system such as ICD-10 (International Classification of Diseases, Tenth Revision) or DRG (Diagnosis-Related Group) codes. This process is essential for medical billing and transitional care; however, manual coding is time-consuming, error-prone, and expensive. To solve these issues, we propose DRGCODER1,2, an explainability-enhanced clinical claim coding system for the early prediction of medical severity DRGs (MS-DRGs), a classification system that categorizes patients’ hospital stays into various DRG groups based on the severity of illness and mortality risk. The DRGCODER framework introduces a novel multi-task Transformer model for MS-DRG prediction, modeling both the DRG labels of the discharge summaries and the important, or salient words within he discharge summaries. We allow users to inspect DRGCODER’s reasoning by visualizing the weights for each word of the input. Additionally, DRGCODER allows users to identify diseases within discharge summaries and compare across multiple discharge summaries.

Original languageEnglish (US)
Pages373-380
Number of pages8
StatePublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: Dec 6 2023Dec 10 2023

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period12/6/2312/10/23

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'DRGCODER: Explainable Clinical Coding for the Early Prediction of Diagnostic-Related Groups'. Together they form a unique fingerprint.

Cite this