Drained residual strength of cohesive soils

Timothy D Stark, Hisham T. Eid

Research output: Contribution to journalArticle

Abstract

Results of torsional ring shear tests on cohesive soils reveal that the drained residual strength is related to the type of clay mineral and quantity of claysize particles. The liquid limit is used as an indicator of clay mineralogy, and the clay-size fraction indicates quantity of particles smaller than 0.002 mm. Therefore, increasing the liquid limit and clay-size fraction decreases the drained residual strength. The ring shear tests also reveal that the drained residual failure envelope is nonlinear, and the nonlinearity is significant for cohesive soils with a clay-size fraction greater than 50% and a liquid limit between 60% and 220%. This nonlinearity should be incorporated into stability analyses. An empirical correlation for residual friction angle is described that is a function of liquid limit, clay-size fraction, and effective normal stress. Previous residual strength correlations are based on only one soil index property and provide a residual friction angle that is independent of effective normal stress. For slope stability analyses, it is recommended that the residual strength be modeled using the entire nonlinear residual strength envelope or a residual friction angle that corresponds to the average effective normal stress on the slip surface.

Original languageEnglish (US)
Pages (from-to)856-871
Number of pages16
JournalJournal of Geotechnical Engineering
Volume120
Issue number5
DOIs
StatePublished - May 1994

ASJC Scopus subject areas

  • Environmental Science(all)
  • Earth and Planetary Sciences(all)

Fingerprint Dive into the research topics of 'Drained residual strength of cohesive soils'. Together they form a unique fingerprint.

  • Cite this