TY - GEN
T1 - Doublesqueeze
T2 - 36th International Conference on Machine Learning, ICML 2019
AU - Tang, Hanlin
AU - Lian, Xiangru
AU - Yu, Chen
AU - Zhang, Tong
AU - Liu, Ji
N1 - Publisher Copyright:
© 36th International Conference on Machine Learning, ICML 2019. All rights reserved.
PY - 2019
Y1 - 2019
N2 - A standard approach in large scale machine learning is distributed stochastic gradient training, which requires the computation of aggregated stochastic gradients over multiple nodes on a network. Communication is a major bottleneck in such applications, and in recent years, compressed stochastic gradient methods such as QSGD (quantized SGD) and sparse SGD have been proposed to reduce communication. It was also shown that error compensation can be combined with compression to achieve better convergence in a scheme that each node compresses its local stochastic gradient and broadcast the result to all other nodes over the network in a single pass. However, such a single pass broadcast approach is not realistic in many practical implementations. For example, under the popular parameter-server model for distributed learning, the worker nodes need to send the compressed local gradients to the parameter server, which performs the aggregation. The parameter server has to compress the aggregated stochastic gradient again before sending it back to the worker nodes. In this work, we provide a detailed analysis on this two-pass communication model, with error-compensated compression both on the worker nodes and on the parameter server. We show that the error-compensated stochastic gradient algorithm admits three very nice properties: 1) it is compatible with an arbitrary compression technique; 2) it admits an improved convergence rate than the non error-compensated stochastic gradient methods such as QSGD and sparse SGD; 3) it admits linear speedup with respect to the number of workers. An empirical study is also conducted to validate our theoretical results.
AB - A standard approach in large scale machine learning is distributed stochastic gradient training, which requires the computation of aggregated stochastic gradients over multiple nodes on a network. Communication is a major bottleneck in such applications, and in recent years, compressed stochastic gradient methods such as QSGD (quantized SGD) and sparse SGD have been proposed to reduce communication. It was also shown that error compensation can be combined with compression to achieve better convergence in a scheme that each node compresses its local stochastic gradient and broadcast the result to all other nodes over the network in a single pass. However, such a single pass broadcast approach is not realistic in many practical implementations. For example, under the popular parameter-server model for distributed learning, the worker nodes need to send the compressed local gradients to the parameter server, which performs the aggregation. The parameter server has to compress the aggregated stochastic gradient again before sending it back to the worker nodes. In this work, we provide a detailed analysis on this two-pass communication model, with error-compensated compression both on the worker nodes and on the parameter server. We show that the error-compensated stochastic gradient algorithm admits three very nice properties: 1) it is compatible with an arbitrary compression technique; 2) it admits an improved convergence rate than the non error-compensated stochastic gradient methods such as QSGD and sparse SGD; 3) it admits linear speedup with respect to the number of workers. An empirical study is also conducted to validate our theoretical results.
UR - https://www.scopus.com/pages/publications/85077989839
UR - https://www.scopus.com/inward/citedby.url?scp=85077989839&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85077989839
T3 - 36th International Conference on Machine Learning, ICML 2019
SP - 10747
EP - 10757
BT - 36th International Conference on Machine Learning, ICML 2019
PB - International Machine Learning Society (IMLS)
Y2 - 9 June 2019 through 15 June 2019
ER -