Doublesqueeze: Parallel stochastic gradient descent with double-pass error-compensated compression

Hanlin Tang, Xiangru Lian, Chen Yu, Tong Zhang, Ji Liu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

A standard approach in large scale machine learning is distributed stochastic gradient training, which requires the computation of aggregated stochastic gradients over multiple nodes on a network. Communication is a major bottleneck in such applications, and in recent years, compressed stochastic gradient methods such as QSGD (quantized SGD) and sparse SGD have been proposed to reduce communication. It was also shown that error compensation can be combined with compression to achieve better convergence in a scheme that each node compresses its local stochastic gradient and broadcast the result to all other nodes over the network in a single pass. However, such a single pass broadcast approach is not realistic in many practical implementations. For example, under the popular parameter-server model for distributed learning, the worker nodes need to send the compressed local gradients to the parameter server, which performs the aggregation. The parameter server has to compress the aggregated stochastic gradient again before sending it back to the worker nodes. In this work, we provide a detailed analysis on this two-pass communication model, with error-compensated compression both on the worker nodes and on the parameter server. We show that the error-compensated stochastic gradient algorithm admits three very nice properties: 1) it is compatible with an arbitrary compression technique; 2) it admits an improved convergence rate than the non error-compensated stochastic gradient methods such as QSGD and sparse SGD; 3) it admits linear speedup with respect to the number of workers. An empirical study is also conducted to validate our theoretical results.

Original languageEnglish (US)
Title of host publication36th International Conference on Machine Learning, ICML 2019
PublisherInternational Machine Learning Society (IMLS)
Pages10747-10757
Number of pages11
ISBN (Electronic)9781510886988
StatePublished - 2019
Externally publishedYes
Event36th International Conference on Machine Learning, ICML 2019 - Long Beach, United States
Duration: Jun 9 2019Jun 15 2019

Publication series

Name36th International Conference on Machine Learning, ICML 2019
Volume2019-June

Conference

Conference36th International Conference on Machine Learning, ICML 2019
Country/TerritoryUnited States
CityLong Beach
Period6/9/196/15/19

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Human-Computer Interaction

Fingerprint

Dive into the research topics of 'Doublesqueeze: Parallel stochastic gradient descent with double-pass error-compensated compression'. Together they form a unique fingerprint.

Cite this